16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A hierarchical nickel–carbon structure templated by metal–organic frameworks for efficient overall water splitting

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High efficiency overall water splitting enabled by a hierarchical Ni–C structure derived from 2D MOF sheets without heteroatom doping.

          Abstract

          The development of high-performance and cost-effective catalysts for the hydrogen and oxygen evolution reactions is key to efficient electrocatalysis of water, which offers a promising solution to convert and store those green but unsteady energies. Herein, we report a hierarchical nickel–carbon composite, fabricated by directly growing sheet-like Ni–MOFs on commercial nickel foam prior to high-temperature annealing, as a highly efficient bifunctional catalyst. This composite shows remarkable catalytic activities for both the hydrogen and oxygen evolution reactions in an alkaline electrolyte, affording a current density of 10 mA cm −2 at an overpotential of 37 mV for the HER and 265 mV for the OER. Furthermore, an electrolyzer employing the composite as a bifunctional catalyst in both the cathode and the anode delivers a current density of 35.9 mA cm −2 at a cell voltage of 1.60 V with extended stability, which is even superior to the integrated Pt/C and RuO 2 counterparts. This excellent performance is believed to be a result of a concerted synergy due to its hierarchical structure, enabling excellent reaction kinetics. Further ex situ XRD and XPS analyses reveal that while metallic nickel is responsible for the HER, Ni nanoparticles with an oxide shell encapsulated in graphitic carbon are the OER catalytically-active sites formed in situ.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives

          We review the fundamental aspects of metal oxides, metal chalcogenides and metal pnictides as effective electrocatalysts for the oxygen evolution reaction. There is still an ongoing effort to search for sustainable, clean and highly efficient energy generation to satisfy the energy needs of modern society. Among various advanced technologies, electrocatalysis for the oxygen evolution reaction (OER) plays a key role and numerous new electrocatalysts have been developed to improve the efficiency of gas evolution. Along the way, enormous effort has been devoted to finding high-performance electrocatalysts, which has also stimulated the invention of new techniques to investigate the properties of materials or the fundamental mechanism of the OER. This accumulated knowledge not only establishes the foundation of the mechanism of the OER, but also points out the important criteria for a good electrocatalyst based on a variety of studies. Even though it may be difficult to include all cases, the aim of this review is to inspect the current progress and offer a comprehensive insight toward the OER. This review begins with examining the theoretical principles of electrode kinetics and some measurement criteria for achieving a fair evaluation among the catalysts. The second part of this review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting. Attention of this review is also paid to in situ approaches to electrocatalytic behavior during OER, and this information is crucial and can provide efficient strategies to design perfect electrocatalysts for OER. Finally, the OER mechanism from the perspective of both recent experimental and theoretical investigations is discussed, as well as probable strategies for improving OER performance with regards to future developments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions.

            A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrahigh porosity in metal-organic frameworks.

              Crystalline solids with extended non-interpenetrating three-dimensional crystal structures were synthesized that support well-defined pores with internal diameters of up to 48 angstroms. The Zn4O(CO2)6 unit was joined with either one or two kinds of organic link, 4,4',4''-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate (BTE), 4,4',44''-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate (BBC), 4,4',44''-benzene-1,3,5-triyl-tribenzoate (BTB)/2,6-naphthalenedicarboxylate (NDC), and BTE/biphenyl-4,4'-dicarboxylate (BPDC), to give four metal-organic frameworks (MOFs), MOF-180, -200, -205, and -210, respectively. Members of this series of MOFs show exceptional porosities and gas (hydrogen, methane, and carbon dioxide) uptake capacities. For example, MOF-210 has Brunauer-Emmett-Teller and Langmuir surface areas of 6240 and 10,400 square meters per gram, respectively, and a total carbon dioxide storage capacity of 2870 milligrams per gram. The volume-specific internal surface area of MOF-210 (2060 square meters per cubic centimeter) is equivalent to the outer surface of nanoparticles (3-nanometer cubes) and near the ultimate adsorption limit for solid materials.
                Bookmark

                Author and article information

                Contributors
                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2018
                2018
                : 11
                : 9
                : 2363-2371
                Affiliations
                [1 ]Soochow Institute for Energy and Materials Innovations
                [2 ]College of Physics
                [3 ]Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology
                [4 ]Soochow University
                [5 ]Suzhou 215006
                [6 ]Analysis and Testing Center
                [7 ]Suzhou 215123
                [8 ]China
                Article
                10.1039/C8EE00934A
                557bfddc-da73-4b7b-894a-d63aa43e0357
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article