Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Subchronic dermal application of N,N-diethyl m-toluamide (DEET) and permethrin to adult rats, alone or in combination, causes diffuse neuronal cell death and cytoskeletal abnormalities in the cerebral cortex and the hippocampus, and Purkinje neuron loss in the cerebellum.

      1 , ,
      Experimental neurology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          N,N-Diethyl m-toluamide (DEET) and permethrin have been implicated as potential neurotoxic agents that may have played an important role in the development of illnesses in some veterans of the Persian Gulf War. To determine the effect of subchronic dermal application of these chemicals on the adult brain, we evaluated histopathological alterations in the brain of adult male rats following a daily dermal dose of DEET (40 mg/kg in 70% ethanol) or permethrin (0.13 mg/kg in 70% ethanol) or a combination of the two for 60 days. Control rats received a daily dermal dose of 70% ethanol for 60 days. Animals were perfused and brains were processed for morphological and histopathological analyses following the above regimen. Quantification of the density of healthy (or surviving) neurons in the motor cerebral cortex, the dentate gyrus, the CA1 and CA3 subfields of the hippocampus, and the cerebellum revealed significant reductions in all three treated groups compared with the control group. Further, animals receiving either DEET or permethrin exhibited a significant number of degenerating (eosinophilic) neurons in the above brain regions. However, degenerating neurons were infrequent in animals receiving both DEET and permethrin, suggesting that neuronal cell death occurs earlier in animals receiving combined DEET and permethrin than in animals receiving either DEET or permethrin alone. The extent of neuron loss in different brain regions was similar among the three treatment groups except the dentate gyrus, where neurodegeneration was significantly greater with exposure to DEET alone. The neuron loss in the motor cerebral cortex and the CA1 subfield of all treated groups was also corroborated by a significant decrease in microtubule associated protein 2-immunoreactive elements (15-52% reduction), with maximal reductions occurring in rats receiving DEET alone; further, the surviving neurons in animals receiving both DEET and permethrin exhibited wavy and beaded dendrites. Analysis of glial fibrillary acidic protein immunoreactivity revealed significant hypertrophy of astrocytes in the hippocampus and the cerebellum of all treated groups (24-106% increase). Thus, subchronic dermal application of DEET and permethrin to adult rats, alone or in combination, leads to a diffuse neuronal cell death in the cerebral cortex, the hippocampal formation, and the cerebellum. Collectively, the above alterations can lead to many physiological, pharmacological, and behavioral abnormalities, particularly motor deficits and learning and memory dysfunction.

          Related collections

          Author and article information

          Journal
          Exp Neurol
          Experimental neurology
          Elsevier BV
          0014-4886
          0014-4886
          Nov 2001
          : 172
          : 1
          Affiliations
          [1 ] Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
          Article
          S0014-4886(01)97807-0
          10.1006/exnr.2001.7807
          11681848
          5526d9be-9cc1-46f4-9bff-0894be6958fc
          Copyright 2001 Academic Press.
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content77

          Cited by22