7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      NFATC1 activation by DNA hypomethylation in chronic lymphocytic leukemia correlates with clinical staging and can be inhibited by ibrutinib : NFATC1 is epigenetically activated in CLL

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib.

          Ibrutinib is an irreversible inhibitor of Bruton's tyrosine kinase (BTK) and is effective in chronic lymphocytic leukemia (CLL). Resistance to irreversible kinase inhibitors and resistance associated with BTK inhibition have not been characterized. Although only a small proportion of patients have had a relapse during ibrutinib therapy, an understanding of resistance mechanisms is important. We evaluated patients with relapsed disease to identify mutations that may mediate ibrutinib resistance. We performed whole-exome sequencing at baseline and the time of relapse on samples from six patients with acquired resistance to ibrutinib therapy. We then performed functional analysis of identified mutations. In addition, we performed Ion Torrent sequencing for identified resistance mutations on samples from nine patients with prolonged lymphocytosis. We identified a cysteine-to-serine mutation in BTK at the binding site of ibrutinib in five patients and identified three distinct mutations in PLCγ2 in two patients. Functional analysis showed that the C481S mutation of BTK results in a protein that is only reversibly inhibited by ibrutinib. The R665W and L845F mutations in PLCγ2 are both potentially gain-of-function mutations that lead to autonomous B-cell-receptor activity. These mutations were not found in any of the patients with prolonged lymphocytosis who were taking ibrutinib. Resistance to the irreversible BTK inhibitor ibrutinib often involves mutation of a cysteine residue where ibrutinib binding occurs. This finding, combined with two additional mutations in PLCγ2 that are immediately downstream of BTK, underscores the importance of the B-cell-receptor pathway in the mechanism of action of ibrutinib in CLL. (Funded by the National Cancer Institute and others.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcription factors of the NFAT family: regulation and function.

            As targets for the immunosuppressive drugs cyclosporin A and FK506, transcription factors of the NFAT (nuclear factor of activated T cells) family have been the focus of much attention. NFAT proteins, which are expressed in most immune-system cells, play a pivotal role in the transcription of cytokine genes and other genes critical for the immune response. The activity of NFAT proteins is tightly regulated by the calcium/calmodulin-dependent phosphatase calcineurin, a primary target for inhibition by cyclosporin A and FK506. Calcineurin controls the translocation of NFAT proteins from the cytoplasm to the nucleus of activated cells by interacting with an N-terminal regulatory domain conserved in the NFAT family. The DNA-binding domains of NFAT proteins resemble those of Rel-family proteins, and Rel and NFAT proteins show some overlap in their ability to bind to certain regulatory elements in cytokine genes. NFAT is also notable for its ability to bind cooperatively with transcription factors of the AP-1 (Fos/Jun) family to composite NFAT:AP-1 sites, found in the regulatory regions of many genes that are inducibly transcribed by immune-system cells. This review discusses recent data on the diversity of the NFAT family of transcription factors, the regulation of NFAT proteins within cells, and the cooperation of NFAT proteins with other transcription factors to regulate the expression of inducible genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765.

              B-cell receptor (BCR) signaling is aberrantly activated in chronic lymphocytic leukemia (CLL). Bruton tyrosine kinase (BTK) is essential to BCR signaling and in knockout mouse models its mutation has a relatively B cell-specific phenotype. Herein, we demonstrate that BTK protein and mRNA are significantly over expressed in CLL compared with normal B cells. Although BTK is not always constitutively active in CLL cells, BCR or CD40 signaling is accompanied by effective activation of this pathway. Using the irreversible BTK inhibitor PCI-32765, we demonstrate modest apoptosis in CLL cells that is greater than that observed in normal B cells. No influence of PCI-32765 on T-cell survival is observed. Treatment of CD40 or BCR activated CLL cells with PCI-32765 results in inhibition of BTK tyrosine phosphorylation and also effectively abrogates downstream survival pathways activated by this kinase including ERK1/2, PI3K, and NF-κB. In addition, PCI-32765 inhibits activation-induced proliferation of CLL cells in vitro, and effectively blocks survival signals provided externally to CLL cells from the microenvironment including soluble factors (CD40L, BAFF, IL-6, IL-4, and TNF-α), fibronectin engagement, and stromal cell contact. Based on these collective data, future efforts targeting BTK with the irreversible inhibitor PCI-32765 in clinical trials of CLL patients is warranted.
                Bookmark

                Author and article information

                Journal
                International Journal of Cancer
                Int. J. Cancer
                Wiley
                00207136
                January 15 2018
                January 15 2018
                October 09 2017
                : 142
                : 2
                : 322-333
                Affiliations
                [1 ]Mechanisms of Leukemogenesis, German Cancer Research Center (DKFZ); Heidelberg Germany
                [2 ]Signaling to Chromatin Laboratory; Institute of Molecular Biology; Mainz Germany
                [3 ]Department I of Internal Medicine; Center of Integrated Oncology Cologne Bonn, University of Cologne; Köln Germany
                [4 ]Division of Biostatistics; German Cancer Research Center (DKFZ); Heidelberg Germany
                [5 ]Department of Biostatistics; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
                [6 ]Department of Internal Medicine III; University of Ulm; Ulm Germany
                [7 ]Department Medical Clinic II; Klinikum Augsburg; Augsburg Germany
                [8 ]Division of Epigenomics and Cancer Risk Factors; German Cancer Research Center (DKFZ); Heidelberg Germany
                [9 ]Division of Molecular Genetics; German Cancer Research Center (DKFZ); Heidelberg Germany
                Article
                10.1002/ijc.31057
                28921505
                5521e2bd-702f-4bd7-82e3-71d4f45d1252
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article