3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Tolvaptan on Oxidative Stress in ADPKD: A Molecular Biological Approach

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autosomal dominant polycystic disease (ADPKD) is the most frequent monogenic kidney disease. It causes progressive renal failure, endothelial dysfunction, and hypertension, all of which are strictly linked to oxidative stress (OxSt). Treatment with tolvaptan is known to slow the renal deterioration rate, but not all the molecular mechanisms involved in this effect are well-established. We evaluated the OxSt state in untreated ADPKD patients compared to that in tolvaptan-treated ADPKD patients and healthy subjects. OxSt was assessed in nine patients for each group in terms of mononuclear cell p22phox protein expression, NADPH oxidase key subunit, MYPT-1 phosphorylation state, marker of Rho kinase activity (Western blot) and heme oxygenase (HO)-1, induced and protective against OxSt (ELISA). p22phox protein expression was higher in untreated ADPKD patients compared to treated patients and controls: 1.42 ± 0.11 vs. 0.86 ± 0.15 d.u., p = 0.015, vs. 0.53 ± 0.11 d.u., p < 0.001, respectively. The same was observed for phosphorylated MYPT-1: 0.96 ± 0.28 vs. 0.68 ± 0.09 d.u., p = 0.013 and vs. 0.47 ± 0.13 d.u., p < 0.001, respectively, while the HO-1 expression of untreated patients was significantly lower compared to that of treated patients and controls: 5.33 ± 3.34 vs. 2.08 ± 0.79 ng/mL, p = 0.012, vs. 1.97 ± 1.22 ng/mL, p = 0.012, respectively. Tolvaptan-treated ADPKD patients have reduced OxSt levels compared to untreated patients. This effect may contribute to the slowing of renal function loss observed with tolvaptan treatment.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found

          Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

          Autosomal-dominant polycystic kidney disease (ADPKD) affects up to 12 million individuals and is the fourth most common cause for renal replacement therapy worldwide. There have been many recent advances in the understanding of its molecular genetics and biology, and in the diagnosis and management of its manifestations. Yet, diagnosis, evaluation, prevention, and treatment vary widely and there are no broadly accepted practice guidelines. Barriers to translation of basic science breakthroughs to clinical care exist, with considerable heterogeneity across countries. The Kidney Disease: Improving Global Outcomes Controversies Conference on ADPKD brought together a panel of multidisciplinary clinical expertise and engaged patients to identify areas of consensus, gaps in knowledge, and research and health-care priorities related to diagnosis; monitoring of kidney disease progression; management of hypertension, renal function decline and complications; end-stage renal disease; extrarenal complications; and practical integrated patient support. These are summarized in this review.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NAD(P)H Oxidase

            Circulation Research, 86(5), 494-501
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease.

              Recent advances in defining the genetic mechanisms of disease causation and modification in autosomal dominant polycystic kidney disease (ADPKD) have helped to explain some extreme disease manifestations and other phenotypic variability. Studies of the ADPKD proteins, polycystin-1 and -2, and the development and characterization of animal models that better mimic the human disease, have also helped us to understand pathogenesis and facilitated treatment evaluation. In addition, an improved understanding of aberrant downstream pathways in ADPKD, such as proliferation/secretion-related signaling, energy metabolism, and activated macrophages, in which cAMP and calcium changes may play a role, is leading to the identification of therapeutic targets. Finally, results from recent and ongoing preclinical and clinical trials are greatly improving the prospects for available, effective ADPKD treatments.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JCMOHK
                Journal of Clinical Medicine
                JCM
                MDPI AG
                2077-0383
                January 2022
                January 13 2022
                : 11
                : 2
                : 402
                Article
                10.3390/jcm11020402
                55145137-772d-4b44-8605-f7a01fc8fcc0
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article