48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Louis Reichardt: The long climb to science's summits

      news
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          From the highest mountains to biology's own Everest—the brain—Reichardt tackles the biggest challenges of climbing and biology.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Neurotransmitter synthesis and uptake by isolated sympathetic neurones in microcultures.

          Assays of isolated single sympathetic neurones show that their transmitter functions can be either adrenergic or cholinergic depending on growth conditions. The data suggest that the number of transmitters made by most mature individual neurones is restricted.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Severe sensory and sympathetic deficits in mice lacking neurotrophin-3.

            During development, neurotrophins help shape the nervous system by regulating neuronal survival and differentiation. Neurotrophin-3 (refs 1-5) is the most abundant neurotrophin during early development. Neurons responsive to neurotrophin-3 in vitro include primary sensory, sympathetic, motor, enteric, locus coeruleus, hippocampal and cerebellar neurons (ref. 9 for example). Here we report that mice lacking neurotrophin-3 have severe deficits in sensory and sympathetic populations. These mice lack muscle spindles and show abnormal limb positions. In contrast, motor neurons, the enteric nervous system, and the major anatomical regions of the central nervous system seem to develop normally. Comparisons with mutants deficient in other neurotrophins or their receptors indicate that some neurons require more than one neurotrophin during embryogenesis and suggest that neurotrophin-3 functions by binding receptors in addition to its primary receptor trkC (ref. 16). In particular, neurotrophin-3 is essential for survival of sympathetic and sensory neurons that later become dependent on nerve growth factor or brain-derived neurotrophic factor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue

              Two different monoclonal antibodies, characterized initially as binding synaptic terminal regions of rat brain, bind a 65,000-dalton protein, which is exposed on the outer surface of brain synaptic vesicles. Immunocytochemical experiments at the electron microscope level demonstrate that these antibodies bind the vesicles in many different types of nerve terminals. The antibodies have been used successfully to purify synaptic vesicles from crude brain homogenates by immunoprecipitation onto the surface of polyacrylamide beads. The profiles of the structures precipitated by these beads are almost exclusively vesicular, confirming the vesicle-specificity of the antibodies. In SDS gels, the antibodies bind a single protein of 65,000 daltons. The two antibodies are not identical, but compete for binding sites on this protein. Immune competition experiments also demonstrate that the antigenic components on the 65,000-dalton protein are widely distributed in neuronal and neural secretory tissues. Detectable antigen is not found in uninnervated tissue--blood cells and extrajunctional muscle. Low levels are found in nonneural secretory tissues; it is not certain whether this reflects the presence of low amounts of the antigen on all the exocytotic vesicles in these tissues or whether the antigen is found only in neuronal fibers within these tissues. The molecular weight and at least two antigenic determinants of the 65,000-dalton protein are highly conserved throughout vertebrate phylogeny. The two antibodies recognize a 65,000-dalton protein present in shark, amphibia, birds, and mammals. The highly conserved nature of the determinants on this protein and their specific localization on secretory vesicles of many different types suggest that this protein may be essential for the normal function of neuronal secretory vesicles.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                7 September 2009
                : 186
                : 5
                : 634-635
                Author notes

                Text and Interview by Nicole LeBrasseur

                Article
                1865pi
                10.1083/jcb.1865pi
                2742192
                19736314
                550282c6-edc2-405c-8337-0fb6ce69cc4b
                © 2009 The Rockefeller University Press
                History
                Categories
                News
                People & Ideas

                Cell biology
                Cell biology

                Comments

                Comment on this article