13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Screen-Printable Electronic Ink of Ultrathin Boron Nitride Nanosheets

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two-dimensional materials play a vital role in the current electronic industry in the fabrication of devices. In the present work, we have exfoliated and stabilized the insulating hexagonal boron nitride (hBN) by means of a polymer-assisted liquid-phase technique. Further, the highly viscous ink of hBN was prepared, and its printability on various commercially available substrates was studied. The morphology of the printed patterns reveals the layered arrangement of hBN. The various electrical and dielectric characterizations, carried out on a metal–insulator–metal capacitor, testified its potential applications in various fields of printed electronics.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal.

          The demand for compact ultraviolet laser devices is increasing, as they are essential in applications such as optical storage, photocatalysis, sterilization, ophthalmic surgery and nanosurgery. Many researchers are devoting considerable effort to finding materials with larger bandgaps than that of GaN. Here we show that hexagonal boron nitride (hBN) is a promising material for such laser devices because it has a direct bandgap in the ultraviolet region. We obtained a pure hBN single crystal under high-pressure and high-temperature conditions, which shows a dominant luminescence peak and a series of s-like exciton absorption bands around 215 nm, proving it to be a direct-bandgap material. Evidence for room-temperature ultraviolet lasing at 215 nm by accelerated electron excitation is provided by the enhancement and narrowing of the longitudinal mode, threshold behaviour of the excitation current dependence of the emission intensity, and a far-field pattern of the transverse mode.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Large scale growth and characterization of atomic hexagonal boron nitride layers.

            Hexagonal boron nitride (h-BN), a layered material similar to graphite, is a promising dielectric. Monolayer h-BN, so-called "white graphene", has been isolated from bulk BN and could be useful as a complementary two-dimensional dielectric substrate for graphene electronics. Here we report the large area synthesis of h-BN films consisting of two to five atomic layers, using chemical vapor deposition. These atomic films show a large optical energy band gap of 5.5 eV and are highly transparent over a broad wavelength range. The mechanical properties of the h-BN films, measured by nanoindentation, show 2D elastic modulus in the range of 200-500 N/m, which is corroborated by corresponding theoretical calculations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Atomic layers of hybridized boron nitride and graphene domains.

              Two-dimensional materials, such as graphene and monolayer hexagonal BN (h-BN), are attractive for demonstrating fundamental physics in materials and potential applications in next-generation electronics. Atomic sheets containing hybridized bonds involving elements B, N and C over wide compositional ranges could result in new materials with properties complementary to those of graphene and h-BN, enabling a rich variety of electronic structures, properties and applications. Here we report the synthesis and characterization of large-area atomic layers of h-BNC material, consisting of hybridized, randomly distributed domains of h-BN and C phases with compositions ranging from pure BN to pure graphene. Our studies reveal that their structural features and bandgap are distinct from those of graphene, doped graphene and h-BN. This new form of hybrid h-BNC material enables the development of bandgap-engineered applications in electronics and optics and properties that are distinct from those of graphene and h-BN.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                14 December 2016
                31 December 2016
                : 1
                : 6
                : 1220-1228
                Affiliations
                []Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology , Trivandrum 695019, Kerala, India
                []Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001, India
                Author notes
                [* ]E-mail: bhojegowd@ 123456niist.res.in . Tel: +91-471-2515474. Fax: +91-471-2491712 (E.B.G.).
                [* ]E-mail: drkpsurendran@ 123456yahoo.com . Tel: +91-471-2515258. Fax: +91-471-2491712 (K.P.S).
                Article
                10.1021/acsomega.6b00242
                6640765
                31457190
                54dcb6fd-e580-48fa-ac99-d363ced87f7a
                Copyright © 2016 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 12 September 2016
                : 01 December 2016
                Categories
                Article
                Custom metadata
                ao6b00242
                ao-2016-00242a

                Comments

                Comment on this article