6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PFKFB3 downregulation aggravates Angiotensin II-induced podocyte detachment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Podocytes play a critical role in maintaining normal glomerular filtration, and podocyte loss from the glomerular basement membrane (GBM) initiates and worsens chronic kidney disease (CKD). However, the exact mechanism underlying podocyte loss remains unclear. Fructose-2,6-biphosphatase 3 (PFKFB3) is a bifunctional enzyme that plays crucial roles in glycolysis, cell proliferation, cell survival, and cell adhesion. This study aimed to determine the role of PFKFB3 in angiotensin II (Ang II) kidney damage. We found that mice infused with Ang II developed glomerular podocyte detachment and impaired renal function accompanied by decreased PFKFB3 expression in vivo and in vitro. Inhibition of PFKFB3 with the PFKFB3 inhibitor 3PO further aggravated podocyte loss induced by Ang II. In contrast, activating PFKFB3 with the PFKFB3 agonist meclizine alleviated the podocyte loss induced by Ang II. Mechanistically, PFKFB3 knockdown likely aggravate Ang II-induced podocyte loss by suppressing talin1 phosphorylation and integrin beta1 subunit (ITGB1) activity. Conversely, PFKFB3 overexpression protected against Ang II-induced podocyte loss. These findings suggest that Ang II leads to a decrease in podocyte adhesion by suppressing PFKFB3 expression, and indicates a potential therapeutic target for podocyte injury in CKD.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

          Summary Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            WNT–β-catenin signalling — a versatile player in kidney injury and repair

            The WNT-β-catenin system is an evolutionary conserved signalling pathway that is of particular importance for morphogenesis and cell organization during embryogenesis. The system is usually suppressed in adulthood; however, it can be re-activated in organ injury and regeneration. WNT-deficient mice display severe kidney defects at birth. Transient WNT-β-catenin activation stimulates tissue regeneration after acute kidney injury, whereas sustained (uncontrolled) WNT-β-catenin signalling promotes kidney fibrosis in chronic kidney disease (CKD), podocyte injury and proteinuria, persistent tissue damage during acute kidney injury and cystic kidney diseases. Additionally, WNT-β-catenin signalling is involved in CKD-associated vascular calcification and mineral bone disease. The WNT-β-catenin pathway is tightly regulated, for example, by proteins of the Dickkopf (DKK) family. In particular, DKK3 is released by 'stressed' tubular epithelial cells; DKK3 drives kidney fibrosis and is associated with short-term risk of CKD progression and acute kidney injury. Thus, targeting the WNT-β-catenin pathway might represent a promising therapeutic strategy in kidney injury and associated complications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Podocytopathies

              Podocytopathies are kidney diseases in which direct or indirect podocyte injury drives proteinuria or nephrotic syndrome. In children and young adults, genetic variants in >50 podocyte-expressed genes, syndromal non-podocyte-specific genes and phenocopies with other underlying genetic abnormalities cause podocytopathies associated with steroid-resistant nephrotic syndrome or severe proteinuria. A variety of genetic variants likely contribute to disease development. Among genes with non-Mendelian inheritance, variants in APOL1 have the largest effect size. In addition to genetic variants, environmental triggers such as immune-related, infection-related, toxic and haemodynamic factors and obesity are also important causes of podocyte injury and frequently combine to cause various degrees of proteinuria in children and adults. Typical manifestations on kidney biopsy are minimal change lesions and focal segmental glomerulosclerosis lesions. Standard treatment for primary podocytopathies manifesting with focal segmental glomerulosclerosis lesions includes glucocorticoids and other immunosuppressive drugs; individuals not responding with a resolution of proteinuria have a poor renal prognosis. Renin-angiotensin system antagonists help to control proteinuria and slow the progression of fibrosis. Symptomatic management may include the use of diuretics, statins, infection prophylaxis and anticoagulation. This Primer discusses a shift in paradigm from patient stratification based on kidney biopsy findings towards personalized management based on clinical, morphological and genetic data as well as pathophysiological understanding.
                Bookmark

                Author and article information

                Journal
                Ren Fail
                Ren Fail
                Renal Failure
                Taylor & Francis
                0886-022X
                1525-6049
                10 July 2023
                2023
                10 July 2023
                : 45
                : 1
                : 2230318
                Affiliations
                [a ]Division of Nephrology, Renmin Hospital of Wuhan University , Wuhan, China
                [b ]Nephrology and Urology Research Institute of Wuhan University , Wuhan, China
                Author notes
                [#]

                Xiaoxiao Huang and Zhaowei Chen contributed equally to this work.

                Supplemental data for this article can be accessed online at https://doi.org/10.1080/0886022X.2023.2230318.

                CONTACT Guohua Ding ghxding@ 123456whu.edu.cn Division of Nephrology, Renmin Hospital of Wuhan University , Wuhan, Hubei 430060, China
                Article
                2230318
                10.1080/0886022X.2023.2230318
                10334864
                37427767
                54c1528f-eb6f-4d98-84ab-cfa6bd5a4590
                © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 6, Tables: 0, Pages: 12, Words: 6080
                Categories
                Research Article
                Clinical Study

                Nephrology
                angiotensin ii,podocyte,pfkfb3,adhesion
                Nephrology
                angiotensin ii, podocyte, pfkfb3, adhesion

                Comments

                Comment on this article