12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of six chloroplast genomes provides insight into the evolution of Chrysosplenium (Saxifragaceae)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Chrysosplenium L. (Saxifragaceae) is a genus of plants widely distributed in Northern Hemisphere and usually found in moist, shaded valleys and mountain slopes. This genus is ideal for studying plant adaptation to low light conditions. Although some progress has been made in the systematics and biogeography of Chrysosplenium, its chloroplast genome evolution remains to be investigated.

          Results

          To fill this gap, we sequenced the chloroplast genomes of six Chrysosplenium species and analyzed their genome structure, GC content, and nucleotide diversity. Moreover, we performed a phylogenetic analysis and calculated non-synonymous (Ka) /synonymous (Ks) substitution ratios using the combined protein-coding genes of 29 species within Saxifragales and two additional species as outgroups, as well as a pair-wise estimation for each gene within Chrysosplenium. Compared with the outgroups in Saxifragaceae, the six Chrysosplenium chloroplast genomes had lower GC contents; they also had conserved boundary regions and gene contents, as only the rpl32 gene was lost in four of the Chrysosplenium chloroplast genomes. Phylogenetic analyses suggested that the Chrysosplenium separated to two major clades (the opposite group and the alternate group). The selection pressure estimation (Ka/Ks ratios) of genes in the Chrysosplenium species showed that matK and ycf2 were subjected to positive selection.

          Conclusion

          This study provides genetic resources for exploring the phylogeny of Chrysosplenium and sheds light on plant adaptation to low light conditions. The lower average GC content and the lacking gene of rpl32 indicated selective pressure in their unique habitats. Different from results previously reported, our selective pressure estimation suggested that the genes related to photosynthesis (such as ycf2) were under positive selection at sites in the coding region.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies

          We present an integrated stand-alone software package named KaKs_Calculator 2.0 as an updated version. It incorporates 17 methods for the calculation of nonsynonymous and synonymous substitution rates; among them, we added our modified versions of several widely used methods as the gamma series including γ-NG, γ-LWL, γ-MLWL, γ-LPB, γ-MLPB, γ-YN and γ-MYN, which have been demonstrated to perform better under certain conditions than their original forms and are not implemented in the previous version. The package is readily used for the identification of positively selected sites based on a sliding window across the sequences of interests in 5’ to 3’ direction of protein-coding sequences, and have improved the overall performance on sequence analysis for evolution studies. A toolbox, including C++ and Java source code and executable files on both Windows and Linux platforms together with a user instruction, is downloadable from the website for academic purpose at https://sourceforge.net/projects/kakscalculator2/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes

            Background Plastome (plastid genome) sequences provide valuable information for understanding the phylogenetic relationships and evolutionary history of plants. Although the rapid development of high-throughput sequencing technology has led to an explosion of plastome sequences, annotation remains a significant bottleneck for plastomes. User-friendly batch annotation of multiple plastomes is an urgent need. Results We introduce Plastid Genome Annotator (PGA), a standalone command line tool that can perform rapid, accurate, and flexible batch annotation of newly generated target plastomes based on well-annotated reference plastomes. In contrast to current existing tools, PGA uses reference plastomes as the query and unannotated target plastomes as the subject to locate genes, which we refer to as the reverse query-subject BLAST search approach. PGA accurately identifies gene and intron boundaries as well as intron loss. The program outputs GenBank-formatted files as well as a log file to assist users in verifying annotations. Comparisons against other available plastome annotation tools demonstrated the high annotation accuracy of PGA, with little or no post-annotation verification necessary. Likewise, we demonstrated the flexibility of reference plastomes within PGA by annotating the plastome of Rosa roxburghii using that of Amborella trichopoda as a reference. The program, user manual and example data sets are freely available at https://github.com/quxiaojian/PGA. Conclusions PGA facilitates rapid, accurate, and flexible batch annotation of plastomes across plants. For projects in which multiple plastomes are generated, the time savings for high-quality plastome annotation are especially significant.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              CPGAVAS2, an integrated plastome sequence annotator and analyzer

              Abstract We previously developed a web server CPGAVAS for annotation, visualization and GenBank submission of plastome sequences. Here, we upgrade the server into CPGAVAS2 to address the following challenges: (i) inaccurate annotation in the reference sequence likely causing the propagation of errors; (ii) difficulty in the annotation of small exons of genes petB, petD and rps16 and trans-splicing gene rps12; (iii) lack of annotation for other genome features and their visualization, such as repeat elements; and (iv) lack of modules for diversity analysis of plastomes. In particular, CPGAVAS2 provides two reference datasets for plastome annotation. The first dataset contains 43 plastomes whose annotation have been validated or corrected by RNA-seq data. The second one contains 2544 plastomes curated with sequence alignment. Two new algorithms are also implemented to correctly annotate small exons and trans-splicing genes. Tandem and dispersed repeats are identified, whose results are displayed on a circular map together with the annotated genes. DNA-seq and RNA-seq data can be uploaded for identification of single-nucleotide polymorphism sites and RNA-editing sites. The results of two case studies show that CPGAVAS2 annotates better than several other servers. CPGAVAS2 will likely become an indispensible tool for plastome research and can be accessed from http://www.herbalgenomics.org/cpgavas2.
                Bookmark

                Author and article information

                Contributors
                liuhong@mail.scuec.edu.cn
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                10 September 2020
                10 September 2020
                2020
                : 21
                : 621
                Affiliations
                [1 ]GRID grid.412692.a, ISNI 0000 0000 9147 9053, Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, , South-Central University for Nationalities, ; Wuhan, 430074 Hubei China
                [2 ]GRID grid.458515.8, ISNI 0000 0004 1770 1110, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, , Wuhan Botanical Garden, Chinese Academy of Sciences, ; Wuhan, 430074 Hubei China
                Author information
                https://orcid.org/0000-0002-2895-7256
                http://orcid.org/0000-0001-7227-2476
                Article
                7045
                10.1186/s12864-020-07045-4
                7488271
                32912155
                54b54d32-a577-4cf1-b443-7cee1f20be7d
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 27 May 2020
                : 1 September 2020
                Funding
                Funded by: Construction Plan of Hubei Province Science and Technology basic conditions platform
                Award ID: No.2017BEC014
                Award Recipient :
                Funded by: Fund for Key Laboratory Construction of Hubei Province
                Award ID: No.2018BFC360
                Award Recipient :
                Funded by: Hubei Provincial Natural Science Foundation of China
                Award ID: No. 2019CFB214
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                Genetics
                saxifragaceae,chrysosplenium,chloroplast genome,opposite leaves,alternate leaves,phylogenomics

                Comments

                Comment on this article