During early development, the infant brain is highly plastic and sensory experiences modulate emerging cortical maps, enhancing processing efficiency as infants set up key linguistic precursors. Early interactive acoustic experience (IAE) with spectrotemporally-modulated non-speech has been shown to facilitate optimal acoustic processing and generalizes to novel non-speech sounds at 7-months-of-age. Here we demonstrate that effects of non-speech IAE endure well beyond the immediate training period and robustly generalize to speech processing. Infants who received non-speech IAE differed at 9-months-of-age from both naïve controls and those with only passive acoustic exposure, demonstrating broad modulation of oscillatory dynamics. For the standard syllable, increased high-gamma (>70 Hz) power within auditory cortices indicates that IAE fosters native speech processing, facilitating establishment of phonemic representations. The higher left beta power seen may reflect increased linking of sensory information and corresponding articulatory patterns, while bilateral decreases in theta power suggest more mature automatized speech processing, as less neuronal resources were allocated to process syllabic information. For the deviant syllable, left-lateralized gamma (<70 Hz) enhancement suggests IAE promotes phonemic-related discrimination abilities. Theta power increases in right auditory cortex, known for favoring slow-rate decoding, implies IAE facilitates the more demanding processing of the sporadic deviant syllable.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.