1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ambient fine particulate matter and breast cancer incidence in a large prospective US cohort

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Fine particulate matter (PM2.5) has been inconsistently associated with breast cancer incidence, however, few studies have considered historic exposure when levels were higher.

          Methods

          Outdoor residential PM2.5 concentrations were estimated using a nationwide spatiotemporal model for women in the National Institutes of Health–AARP Diet and Health Study, a prospective cohort located in 6 states (California, Florida, Louisiana, New Jersey, North Carolina, and Pennsylvania) and 2 metropolitan areas (Atlanta, GA, and Detroit, MI) and enrolled in 1995-1996 (n = 196 905). Annual average PM2.5 concentrations were estimated for a 5-year historical period 10 years prior to enrollment (1980-1984). We used Cox regression to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between a 10 µg/m3 increase in PM2.5 and breast cancer incidence overall and by estrogen receptor status and catchment area.

          Results

          With follow-up of participants through 2017, a total of 15 870 breast cancer cases were identified. A 10 ug/m3 increase in PM2.5 was statistically significantly associated with overall breast cancer incidence (HR = 1.08, 95% CI = 1.02 to 1.13). The association was evident for estrogen receptor–positive (HR = 1.10, 95% CI = 1.04 to 1.17) but not estrogen receptor–negative tumors (HR = 0.97, 95% CI = 0.84 to 1.13; Pheterogeneity = .3). Overall breast cancer hazard ratios were more than 1 across the catchment areas, ranging from a hazard ratio of 1.26 (95% CI = 0.96 to 1.64) for North Carolina to a hazard ratio of 1.04 (95% CI = 0.68 to 1.57) for Louisiana (Pheterogeneity = .9).

          Conclusions

          In this large US cohort with historical air pollutant exposure estimates, PM2.5 was associated with risk of estrogen receptor–positive breast cancer. State-specific estimates were imprecise but suggest that future work should consider region-specific associations and the potential contribution of PM2.5 chemical constituency in modifying the observed association.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Breast Cancer Treatment

            Breast cancer will be diagnosed in 12% of women in the United States over the course of their lifetimes and more than 250 000 new cases of breast cancer were diagnosed in the United States in 2017. This review focuses on current approaches and evolving strategies for local and systemic therapy of breast cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spatial and Temporal Variation in PM2.5 Chemical Composition in the United States for Health Effects Studies

              Background Although numerous studies have demonstrated links between particulate matter (PM) and adverse health effects, the chemical components of the PM mixture that cause injury are unknown. Objectives This work characterizes spatial and temporal variability of PM2.5 (PM with aerodynamic diameter < 2.5 μm) components in the United States; our objective is to identify components for assessment in epidemiologic studies. Methods We constructed a database of 52 PM2.5 component concentrations for 187 U.S. counties for 2000–2005. First, we describe the challenges inherent to analysis of a national PM2.5 chemical composition database. Second, we identify components that contribute substantially to and/or co-vary with PM2.5 total mass. Third, we characterize the seasonal and regional variability of targeted components. Results Strong seasonal and geographic variations in PM2.5 chemical composition are identified. Only seven of the 52 components contributed ≥ 1% to total mass for yearly or seasonal averages [ammonium (NH4 +), elemental carbon (EC), organic carbon matter (OCM), nitrate (NO3 −), silicon, sodium (Na+), and sulfate (SO4 2−)]. Strongest correlations with PM2.5 total mass were with NH4 + (yearly), OCM (especially winter), NO3 − (winter), and SO4 2− (yearly, spring, autumn, and summer), with particularly strong correlations for NH4 + and SO4 2− in summer. Components that co-varied with PM2.5 total mass, based on daily detrended data, were NH4 +, SO4 2− , OCM, NO3 2−, bromine, and EC. Conclusions The subset of identified PM2.5 components should be investigated further to determine whether their daily variation is associated with daily variation of health indicators, and whether their seasonal and regional patterns can explain the seasonal and regional heterogeneity in PM10 (PM with aerodynamic diameter < 10 μm) and PM2.5 health risks.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JNCI: Journal of the National Cancer Institute
                Oxford University Press (OUP)
                0027-8874
                1460-2105
                September 11 2023
                September 11 2023
                Article
                10.1093/jnci/djad170
                5494d3b9-0da6-44b6-bfe9-7515541c3f5a
                © 2023
                History

                Comments

                Comment on this article