4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanosuspensions technology as a master key for nature products drug delivery and In vivo fate

      , , ,
      European Journal of Pharmaceutical Sciences
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The drug nanosuspensions is a universal formulation approach for improved drug delivery of hydrophobic drugs and one the most promising approaches for increasing the biopharmaceutical performance of poorly water-soluble drug substances, especially for nature products. This review aimed to summarize the nanosuspensions preparation approaches and the main technological difficulties encountered in nanosuspensions development, such as guidelines for stabilizers screening, in vivo fate of the intravenously administrated nanosuspensions, and how to realize the intravenously target delivery was reviewed. Furthermore, challenges of nanosuspensions for the nature products delivery also was discussed and commented. Therefore, it hoped to provide reference and assistance for the nanosuspensions production, stabilizers usage, and predictability of in vivo fate and controllability of targeting delivery of the nature products nanosuspensions.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: not found
          • Article: not found

          Engineered nanomedicines with enhanced tumor penetration

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications

            Atherosclerosis (AS), the underlying cause of most cardiovascular events, is one of the most common causes of human morbidity and mortality worldwide due to the lack of an efficient strategy for targeted therapy. In this work, we aimed to develop an ideal biomimetic nanoparticle for targeted AS therapy. Methods: Based on macrophage “homing” into atherosclerotic lesions and cell membrane coating nanotechnology, biomimetic nanoparticles (MM/RAPNPs) were fabricated with a macrophage membrane (MM) coating on the surface of rapamycin-loaded poly (lactic-co-glycolic acid) copolymer (PLGA) nanoparticles (RAPNPs). Subsequently, the physical properties of the MM/RAPNPs were characterized. The biocompatibility and biological functions of MM/RAPNPs were determined in vitro. Finally, in AS mouse models, the targeting characteristics, therapeutic efficacy and safety of the MM/RAPNPs were examined. Results: The advanced MM/RAPNPs demonstrated good biocompatibility. Due to the MM coating, the nanoparticles effectively inhibited the phagocytosis by macrophages and targeted activated endothelial cells in vitro. In addition, MM-coated nanoparticles effectively targeted and accumulated in atherosclerotic lesions in vivo. After a 4-week treatment program, MM/RAPNPs were shown to significantly delay the progression of AS. Furthermore, MM/RAPNPs displayed favorable safety performance after long-term administration. Conclusion: These results demonstrate that MM/RAPNPs could efficiently and safely inhibit the progression of AS. These biomimetic nanoparticles may be potential drug delivery systems for safe and effective anti-AS applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension

              One means of combating the spread of human immunodeficiency virus (HIV) is through the delivery of long-acting, antiretroviral (ARV) drugs for prevention and treatment. The development of a discreet, self-administered and self-disabling delivery vehicle to deliver such ARV drugs could obviate compliance issues with daily oral regimens. Alternatives in development, such as long-acting intramuscular (IM) injections, require regular access to health care facilities and disposal facilities for sharps. Consequently, this proof of concept study was developed to evaluate the use of dissolving microarray patches (MAPs) containing a long-acting (LA) nanosuspension of the candidate ARV drug, rilpivirine (RPV). MAPs were mechanically strong and penetrated skin in vitro, delivering RPV intradermally. In in vivo studies, the mean plasma concentration of RPV in rats (431 ng/ml at the Day 7 time point) was approximately ten-fold greater than the trough concentration observed after a single-dose in previous clinical studies. These results are the first to indicate, by the determination of relative exposures between IM and MAP administration, that larger multi-array dissolving MAPs could potentially be used to effectively deliver human doses of RPV LA. Importantly, RPV was also detected in the lymph nodes, indicating the potential to deliver this ARV agent into one of the primary sites of HIV replication over extended durations. These MAPs could potentially improve patient acceptability and adherence to HIV prevention and treatment regimens and combat instances of needle-stick injury and the transmission of blood-borne diseases, which would have far-reaching benefits, particularly to those in the developing world.
                Bookmark

                Author and article information

                Journal
                European Journal of Pharmaceutical Sciences
                European Journal of Pharmaceutical Sciences
                Elsevier BV
                09280987
                June 2023
                June 2023
                : 185
                : 106425
                Article
                10.1016/j.ejps.2023.106425
                36934992
                546dd6bb-7675-4b5b-bf52-bc8a908c4057
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article