51
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Emerging concepts in the science of vaccine adjuvants

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adjuvants are vaccine components that enhance the magnitude, breadth and durability of the immune response. Following its introduction in the 1920s, alum remained the only adjuvant licensed for human use for the next 70 years. Since the 1990s, a further five adjuvants have been included in licensed vaccines, but the molecular mechanisms by which these adjuvants work remain only partially understood. However, a revolution in our understanding of the activation of the innate immune system through pattern recognition receptors (PRRs) is improving the mechanistic understanding of adjuvants, and recent conceptual advances highlight the notion that tissue damage, different forms of cell death, and metabolic and nutrient sensors can all modulate the innate immune system to activate adaptive immunity. Furthermore, recent advances in the use of systems biology to probe the molecular networks driving immune response to vaccines (‘systems vaccinology’) are revealing mechanistic insights and providing a new paradigm for the vaccine discovery and development process. Here, we review the ‘known knowns’ and ‘known unknowns’ of adjuvants, discuss these emerging concepts and highlight how our expanding knowledge about innate immunity and systems vaccinology are revitalizing the science and development of novel adjuvants for use in vaccines against COVID-19 and future pandemics.

          Abstract

          This Review discusses how recent advances in understanding the activation of the innate immune system are shedding light on the immunological mechanisms of action of adjuvants and highlights how systems-based approaches are beginning to revitalize adjuvant design and development.

          Related collections

          Most cited references238

          • Record: found
          • Abstract: found
          • Article: not found

          Role of the microbiota in immunity and inflammation.

          The microbiota plays a fundamental role on the induction, training, and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally, this immune system-microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nematodes, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors.

            The discovery of Toll-like receptors (TLRs) as components that recognize conserved structures in pathogens has greatly advanced understanding of how the body senses pathogen invasion, triggers innate immune responses and primes antigen-specific adaptive immunity. Although TLRs are critical for host defense, it has become apparent that loss of negative regulation of TLR signaling, as well as recognition of self molecules by TLRs, are strongly associated with the pathogenesis of inflammatory and autoimmune diseases. Furthermore, it is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Here we describe the recent advances that have been made by research into the role of TLR biology in host defense and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T-cell responses

              An effective vaccine is needed to halt the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. Recently, we reported safety, tolerability and antibody response data from an ongoing placebo-controlled, observer-blinded phase I/II coronavirus disease 2019 (COVID-19) vaccine trial with BNT162b1, a lipid nanoparticle-formulated nucleoside-modified mRNA that encodes the receptor binding domain (RBD) of the SARS-CoV-2 spike protein1. Here we present antibody and T cell responses after vaccination with BNT162b1 from a second, non-randomized open-label phase I/II trial in healthy adults, 18-55 years of age. Two doses of 1-50 μg of BNT162b1 elicited robust CD4+ and CD8+ T cell responses and strong antibody responses, with RBD-binding IgG concentrations clearly above those seen in serum from a cohort of individuals who had recovered from COVID-19. Geometric mean titres of SARS-CoV-2 serum-neutralizing antibodies on day 43 were 0.7-fold (1-μg dose) to 3.5-fold (50-μg dose) those of the recovered individuals. Immune sera broadly neutralized pseudoviruses with diverse SARS-CoV-2 spike variants. Most participants had T helper type 1 (TH1)-skewed T cell immune responses with RBD-specific CD8+ and CD4+ T cell expansion. Interferon-γ was produced by a large fraction of RBD-specific CD8+ and CD4+ T cells. The robust RBD-specific antibody, T cell and favourable cytokine responses induced by the BNT162b1 mRNA vaccine suggest that it has the potential to protect against COVID-19 through multiple beneficial mechanisms.
                Bookmark

                Author and article information

                Contributors
                bpulend@stanford.edu
                Journal
                Nat Rev Drug Discov
                Nat Rev Drug Discov
                Nature Reviews. Drug Discovery
                Nature Publishing Group UK (London )
                1474-1776
                1474-1784
                6 April 2021
                : 1-22
                Affiliations
                [1 ]GRID grid.168010.e, ISNI 0000000419368956, Institute for Immunity, Transplantation and Infection, , Stanford University School of Medicine, Stanford University, ; Stanford, CA USA
                [2 ]GRID grid.168010.e, ISNI 0000000419368956, Department of Pathology, , Stanford University School of Medicine, Stanford University, ; Stanford, CA USA
                [3 ]GRID grid.168010.e, ISNI 0000000419368956, Department of Microbiology & Immunology, , Stanford University School of Medicine, Stanford University, ; Stanford, CA USA
                [4 ]GRID grid.168010.e, ISNI 0000000419368956, Chemistry, Engineering & Medicine for Human Health, , Stanford University School of Medicine, Stanford University, ; Stanford, CA USA
                [5 ]GSK Vaccines, Rockville, MD USA
                Author information
                http://orcid.org/0000-0001-6517-4333
                http://orcid.org/0000-0003-0090-5689
                Article
                163
                10.1038/s41573-021-00163-y
                8023785
                33824489
                546c74ee-1ef7-4326-8bbc-819a2690d6a7
                © Springer Nature Limited 2021

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 9 February 2021
                Categories
                Review Article

                immunology,vaccines
                immunology, vaccines

                Comments

                Comment on this article