30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Resolution Multi-delay Arterial Spin Labeling with Transformer based Denoising for Pediatric Perfusion MRI

      Preprint
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multi-delay arterial spin labeling (MDASL) can quantitatively measure cerebral blood flow (CBF) and arterial transit time (ATT), which is particularly suitable for pediatric perfusion imaging. Here we present a high resolution (iso-2mm) MDASL protocol and performed test-retest scans on 21 typically developing children aged 8 to 17 years. We further proposed a Transformer-based deep learning (DL) model with k-space weighted image average (KWIA) denoised images as reference for training the model. The performance of the model was evaluated by the SNR of perfusion images, as well as the SNR, bias and repeatability of the fitted CBF and ATT maps. The proposed method was compared to several benchmark methods including KWIA, joint denoising and reconstruction with total generalized variation (TGV) regularization, as well as directly applying a pretrained Transformer model on a larger dataset. The results show that the proposed Transformer model with KWIA reference can effectively denoise multi-delay ASL images, not only improving the SNR for perfusion images of each delay, but also improving the SNR for the fitted CBF and ATT maps. The proposed method also improved test-retest repeatability of whole-brain perfusion measurements. This may facilitate the use of MDASL in neurodevelopmental studies to characterize typical and aberrant brain development.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research.

          Intraclass correlation coefficient (ICC) is a widely used reliability index in test-retest, intrarater, and interrater reliability analyses. This article introduces the basic concept of ICC in the content of reliability analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Deep Learning in Medical Image Analysis

            This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

              This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with \textbf{S}hifted \textbf{win}dows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at~\url{https://github.com/microsoft/Swin-Transformer}.
                Bookmark

                Author and article information

                Journal
                medRxiv
                MEDRXIV
                medRxiv
                Cold Spring Harbor Laboratory
                06 March 2024
                : 2024.03.04.24303727
                Affiliations
                University of Southern California, Los Angeles, California 90033 USA
                Author notes
                Corresponding Author: Danny JJ Wang jwang71@ 123456gmail.com
                Author information
                http://orcid.org/0000-0002-3343-3895
                http://orcid.org/0000-0002-9841-6332
                http://orcid.org/0000-0002-4130-6204
                http://orcid.org/0000-0002-0840-4582
                http://orcid.org/0000-0002-0840-7062
                Article
                10.1101/2024.03.04.24303727
                10942515
                38496517
                543b2b32-e35e-4882-a19b-ca9c81aded71

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.

                History
                Categories
                Article

                arterial spin labeling,magnetic resonance imaging,image denoising,neurodevelopment,deep learning

                Comments

                Comment on this article