9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reduction of the survival time of pig xenotransplants by porcine cytomegalovirus

      review-article
      Virology Journal
      BioMed Central
      Porcine cytomegalovirus, Xenotransplantation, Herpesviruses

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Xenotransplantation using pig cells, tissues and organs may help to overcome the shortage of human tissues and organs for the treatment of tissue and organ failure. Progress in the prevention of immunological rejection using genetically modified pigs and new, more effective, immunosuppression regimens will allow clinical application of xenotransplantation in near future. However, xenotransplantation may be associated with the transmission of potentially zoonotic porcine microorganisms. Until now the only xenotransplantation-associated transmission was the transmission of the porcine cytomegalovirus (PCMV) into non-human primates. PCMV caused a significant reduction of the survival time of the pig transplant.

          Main body of the abstract

          Here the available publications were analysed in order to establish the mechanism how PCMV shortened the survival time of xenotransplants. PCMV is a herpesvirus related to the human cytomegalovirus and the human herpesviruses 6 and 7. These three human herpesviruses can cause serious disease among immunocompromised human individuals, including transplant recipients. It was shown that PCMV predominantly contributes to the reduction of transplant survival in non-human primates by disruption of the coagulation system and by suppression and exhaustion of the immune system.

          Conclusion

          Although it is still unknown whether PCMV infects primate cells including human cells, indirect mechanism of the virus infection may cause reduction of the xenotransplant survival in future clinical trials and therefore PCMV has to be eliminated from donor pigs.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9

          Xenotransplantation is a promising strategy to alleviate the shortage of organs for human transplantation. In addition to the concern on pig-to-human immunological compatibility, the risk of cross-species transmission of porcine endogenous retroviruses (PERVs) has impeded the clinical application of this approach. Earlier, we demonstrated the feasibility of inactivating PERV activity in an immortalized pig cell line. Here, we confirmed that PERVs infect human cells, and observed the horizontal transfer of PERVs among human cells. Using CRISPR-Cas9, we inactivated all the PERVs in a porcine primary cell line and generated PERV-inactivated pigs via somatic cell nuclear transfer. Our study highlighted the value of PERV inactivation to prevent cross-species viral transmission and demonstrated the successful production of PERV-inactivated animals to address the safety concern in clinical xenotransplantation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses.

            Xenotransplantation may be a solution to overcome the shortage of organs for the treatment of patients with organ failure, but it may be associated with the transmission of porcine microorganisms and the development of xenozoonoses. Whereas most microorganisms may be eliminated by pathogen-free breeding of the donor animals, porcine endogenous retroviruses (PERVs) cannot be eliminated, since these are integrated into the genomes of all pigs. Human-tropic PERV-A and -B are present in all pigs and are able to infect human cells. Infection of ecotropic PERV-C is limited to pig cells. PERVs may adapt to host cells by varying the number of LTR-binding transcription factor binding sites. Like all retroviruses, they may induce tumors and/or immunodeficiencies. To date, all experimental, preclinical, and clinical xenotransplantations using pig cells, tissues, and organs have not shown transmission of PERV. Highly sensitive and specific methods have been developed to analyze the PERV status of donor pigs and to monitor recipients for PERV infection. Strategies have been developed to prevent PERV transmission, including selection of PERV-C-negative, low-producer pigs, generation of an effective vaccine, selection of effective antiretrovirals, and generation of animals transgenic for a PERV-specific short hairpin RNA inhibiting PERV expression by RNA interference.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pig kidney graft survival in a baboon for 136 days: longest life-supporting organ graft survival to date.

              The longest survival of a non-human primate with a life-supporting kidney graft to date has been 90 days, although graft survival > 30 days has been unusual. A baboon received a kidney graft from an α-1,3-galactosyltransferase gene-knockout pig transgenic for two human complement-regulatory proteins and three human coagulation-regulatory proteins (although only one was expressed in the kidney). Immunosuppressive therapy was with ATG+anti-CD20mAb (induction) and anti-CD40mAb+rapamycin+corticosteroids (maintenance). Anti-TNF-α and anti-IL-6R were administered. The baboon survived 136 days with a generally stable serum creatinine (0.6 to 1.6 mg/dl) until termination. No features of a consumptive coagulopathy (e.g., thrombocytopenia, decreased fibrinogen) or of a protein-losing nephropathy were observed. There was no evidence of an elicited anti-pig antibody response. Death was from septic shock (Myroides spp). Histology of a biopsy on day 103 was normal, but by day 136, the kidney showed features of glomerular enlargement, thrombi, and mesangial expansion. The combination of (i) a graft from a specific genetically engineered pig, (ii) an effective immunosuppressive regimen, and (iii) anti-inflammatory agents prevented immune injury and a protein-losing nephropathy, and delayed coagulation dysfunction. This outcome encourages us that clinical renal xenotransplantation may become a reality.
                Bookmark

                Author and article information

                Contributors
                DennerJ@rki.de
                Journal
                Virol J
                Virol. J
                Virology Journal
                BioMed Central (London )
                1743-422X
                8 November 2018
                8 November 2018
                2018
                : 15
                : 171
                Affiliations
                ISNI 0000 0001 0940 3744, GRID grid.13652.33, Robert Koch Fellow, Robert Koch Institute, ; Nordufer 20, 13353 Berlin, Germany
                Author information
                http://orcid.org/0000-0003-3244-6085
                Article
                1088
                10.1186/s12985-018-1088-2
                6225623
                30409210
                5423df97-affe-4b6a-a636-499c4625230a
                © The Author(s). 2018

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 10 July 2018
                : 28 October 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: TRR 127
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2018

                Microbiology & Virology
                porcine cytomegalovirus,xenotransplantation,herpesviruses
                Microbiology & Virology
                porcine cytomegalovirus, xenotransplantation, herpesviruses

                Comments

                Comment on this article