9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic SDN-based Radio Access Network Slicing with Deep Reinforcement Learning for URLLC and eMBB Services

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radio access network (RAN) slicing is a key technology that enables 5G network to support heterogeneous requirements of generic services, namely ultra-reliable low-latency communication (URLLC) and enhanced mobile broadband (eMBB). In this paper, we propose a two time-scales RAN slicing mechanism to optimize the performance of URLLC and eMBB services. In a large time-scale, an SDN controller allocates radio resources to gNodeBs according to the requirements of the eMBB and URLLC services. In a short time-scale, each gNodeB allocates its available resources to its end-users and requests, if needed, additional resources from adjacent gNodeBs. We formulate this problem as a non-linear binary program and prove its NP-hardness. Next, for each time-scale, we model the problem as a Markov decision process (MDP), where the large-time scale is modeled as a single agent MDP whereas the shorter time-scale is modeled as a multi-agent MDP. We leverage the exponential-weight algorithm for exploration and exploitation (EXP3) to solve the single-agent MDP of the large time-scale MDP and the multi-agent deep Q-learning (DQL) algorithm to solve the multi-agent MDP of the short time-scale resource allocation. Extensive simulations show that our approach is efficient under different network parameters configuration and it outperforms recent benchmark solutions.

          Related collections

          Author and article information

          Journal
          13 February 2022
          Article
          2202.06435
          5414023b-d1a0-4f61-858e-fd6af2ce9608

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          cs.NI

          Networking & Internet architecture
          Networking & Internet architecture

          Comments

          Comment on this article