14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of a specific α-synuclein peptide (α-Syn 29-40) capable of eliciting microglial superoxide production to damage dopaminergic neurons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Misfolded α-synuclein (α-Syn) aggregates participate in the pathogenesis of synucleinopathies, such as Parkinson’s disease. Whereas much is known about how the various domains within full-length α-Syn (FL-α-Syn) contribute to the formation of α-Syn aggregates and therefore to their neurotoxicity, little is known about whether the individual peptides that can be generated from α-syn, possibly as intermediate metabolites during degradation of misfolded α-Syn aggregates, are neurotoxic themselves.

          Methods

          A series of synthesized α-Syn peptides, corresponding to the locus in FL-α-Syn containing alanine 30, substitution of which with a proline causes a familial form of Parkinson’s disease, were examined for their capacity of inducing release of microglial superoxide. The neurotoxicity of these peptides was measured according to their influence on the ability of neuroglial cultures deficient in gp91 phox , the catalytic unit of NADPH oxidase (Nox2), or wild-type cultures to take up 3H-labeled dopamine and on the number of tyrosine hydroxylase-staining-positive neurons. Western blots and confocal images were utilized to analyze membrane translocation of p47 phox and p67 phox , phosphorylation of p47 phox and Erk1/2 kinase, and binding of α-Syn peptides to gp91 phox . Activation of brain microglia in mice injected with α-Syn peptides was demonstrated by immunostaining for major histocompatibility complex (MHC)-II along with qPCR for Iba-1 and MHC-II.

          Results

          We report α-Syn (29-40) as a specific peptide capable of activating microglial Nox2 to produce superoxide and cause dopaminergic neuronal damage. Administered to mice, this peptide also activated brain microglia to increase expression of MHC-II and Iba-1 and stimulated oxidation reaction. Exploring the underlying mechanisms showed that α-Syn (29-40) peptide triggered Nox2 to generate extracellular superoxide and its metabolite H 2O 2 by binding to the catalytic unit gp91 phox of Nox2; diffusing into cytosol, H 2O 2 activated Erk1/2 kinase to phosphorylate p47 phox and p67 phox and further activated Nox2, establishing a positive feedback loop to amplify the Nox2-mediated response.

          Conclusions

          Collectively, our study suggests novel information regarding how α-Syn causes neuronal injury, possibly including mechanisms involving abnormal metabolites of α-Syn aggregates.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly.

          Neuronal and oligodendrocytic aggregates of fibrillar alpha-synuclein define several diseases of the nervous system. It is likely that these inclusions impair vital metabolic processes and compromise viability of affected cells. Here, we report that a 12-amino acid stretch ((71)VTGVTAVAQKTV(82)) in the middle of the hydrophobic domain of human alpha-synuclein is necessary and sufficient for its fibrillization based on the following observations: 1) human beta-synuclein is highly homologous to alpha-synuclein but lacks these 12 residues, and it does not assemble into filaments in vitro; 2) the rate of alpha-synuclein polymerization in vitro decreases after the introduction of a single charged amino acid within these 12 residues, and a deletion within this region abrogates assembly; 3) this stretch of 12 amino acids appears to form the core of alpha-synuclein filaments, because it is resistant to proteolytic digestion in alpha-synuclein filaments; and 4) synthetic peptides corresponding to this 12-amino acid stretch self-polymerize to form filaments, and these peptides promote fibrillization of full-length human alpha-synuclein in vitro. Thus, we have identified key sequence elements necessary for the assembly of human alpha-synuclein into filaments, and these elements may be exploited as targets for the design of drugs that inhibit alpha-synuclein fibrillization and might arrest disease progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy.

            The Parkinson's disease (PD) substantia nigra is characterized by the presence of Lewy bodies containing fibrillar alpha-synuclein. Early-onset PD has been linked to two point mutations in the gene that encodes alpha-synuclein, suggesting that disease may arise from accelerated fibrillization. However, the identity of the pathogenic species and its relationship to the alpha-synuclein fibril has not been elucidated. In this in vitro study, the rates of disappearance of monomeric alpha-synuclein and appearance of fibrillar alpha-synuclein were compared for the wild-type (WT) and two mutant proteins, as well as equimolar mixtures that may model the heterozygous PD patients. Whereas one of the mutant proteins (A53T) and an equimolar mixture of A53T and WT fibrillized more rapidly than WT alpha-synuclein, the other (A30P) and the corresponding equimolar mixture with WT fibrillized more slowly. However, under conditions that ultimately produced fibrils, the A30P monomer was consumed at a comparable rate or slightly more rapidly than the WT monomer, whereas A53T was consumed even more rapidly. The difference between these trends suggested the existence of nonfibrillar alpha-synuclein oligomers, some of which were separated from fibrillar and monomeric alpha-synuclein by sedimentation followed by gel-filtration chromatography. Spheres (range of heights: 2-6 nm), chains of spheres (protofibrils), and rings resembling circularized protofibrils (height: ca. 4 nm) were distinguished from fibrils (height: ca. 8 nm) by atomic force microscopy. Importantly, drug candidates that inhibit alpha-synuclein fibrillization but do not block its oligomerization could mimic the A30P mutation and thus may accelerate disease progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors.

              Malondialdehyde (MDA) is one of the most frequently used indicators of lipid peroxidation. To generate reliable reference intervals for plasma malondialdehyde (P-MDA), a reference sample group was established in Funen, Denmark. The group consisted of 213 individuals (107 men, 106 women), ages 20-79 years. P-MDA was measured in EDTA-treated plasma after derivatization by thiobarbituric acid (TBA) and separation on HPLC. UV detection was performed at 532 nm. A reference interval was calculated as recommended by IFCC with REFVAL 3.42. The estimated reference limits (0.025 and 0.975 fractals) for the group were 0.36 and 1.24 mumol/L. The data were analyzed for gender- and age-related differences. Analysis of variance showed no interaction between gender and age, but separate analyses showed an independent effect of gender (P = 0.03), but not of age (P = 0.11). Daily smokers had a slightly higher average concentration of P-MDA than nonsmokers (P = 0.05), and P-MDA correlated with daily exposure to cigarette smoke (r = 0.162; P = 0.03). A positive correlation was also demonstrated between P-MDA and weekly alcohol consumption (r = 0.153; P = 0.03). Within-subject and day-to-day variations of P-MDA indicated that the potential of P-MDA as a biomarker for individuals is questionable. However, on a group basis, the present data support that P-MDA may be a potential biomarker for oxidative stress.
                Bookmark

                Author and article information

                Contributors
                hong3@niehs.nih.gov
                zhangj@uw.edu
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                21 June 2016
                21 June 2016
                2016
                : 13
                : 158
                Affiliations
                [ ]Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104 USA
                [ ]Neuropharmacology Section, Laboratory of Neurobiology, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709 USA
                [ ]Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
                [ ]Department of Laboratory Medicine, Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin Medical University, Tianjin, 300350 China
                [ ]Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012 China
                [ ]Department of Geriatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
                [ ]Department of Pathology, Peking University Health Science Center, Beijing, 100083 China
                Article
                606
                10.1186/s12974-016-0606-7
                4915166
                27329107
                5404c6a7-0302-4812-9905-7cc55129bd4c
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 3 December 2015
                : 1 June 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000066, National Institute of Environmental Health Sciences;
                Award ID: ES019277
                Award ID: ES016873
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Neurosciences
                α-synuclein,gp91phox,superoxide,neuronal damage,microglia
                Neurosciences
                α-synuclein, gp91phox, superoxide, neuronal damage, microglia

                Comments

                Comment on this article