Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress – ScienceOpen
87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Hsp20 genes are present in all plant species and play important roles in alleviating heat stress and enhancing plant thermotolerance by preventing the irreversible aggregation of denaturing proteins. However, very little is known about the CaHsp20 gene family in pepper ( Capsicum annuum L.), an important vegetable crop with character of temperate but thermosensitive. In this study, a total of 35 putative pepper Hsp20 genes ( CaHsp20s) were identified and renamed on the basis of their molecular weight, and then their gene structure, genome location, gene duplication, phylogenetic relationship, and interaction network were also analyzed. The expression patterns of CaHsp20 genes in four different tissues (root, stem, leaf, and flower) from the thermotolerant line R9 under heat stress condition were measured using semi-quantitative RT-PCR. The transcripts of most CaHsp20 genes maintained a low level in all of the four tissues under normal temperature condition, but were highly induced by heat stress, while the expression of CaHsp16.6b, 16.7, and 23.8 were only detected in specific tissues and were not so sensitive to heat stress like other CaHsp20 genes. In addition, compared to those in thermotolerant line R9, the expression peak of most CaHsp20 genes in thermosensitive line B6 under heat stress was hysteretic, and several CaHsp20 genes ( CaHsp16.4, 18.2a, 18.7, 21.2, 22.0, 25.8, and 25.9) showed higher expression levels in both line B6 and R9. These data suggest that the CaHsp20 genes may be involved in heat stress and defense responses in pepper, which provides the basis for further functional analyses of CaHsp20s in the formation of pepper acquired thermotoleance.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Abiotic stress, the field environment and stress combination.

          Farmers and breeders have long known that often it is the simultaneous occurrence of several abiotic stresses, rather than a particular stress condition, that is most lethal to crops. Surprisingly, the co-occurrence of different stresses is rarely addressed by molecular biologists that study plant acclimation. Recent studies have revealed that the response of plants to a combination of two different abiotic stresses is unique and cannot be directly extrapolated from the response of plants to each of the different stresses applied individually. Tolerance to a combination of different stress conditions, particularly those that mimic the field environment, should be the focus of future research programs aimed at developing transgenic crops and plants with enhanced tolerance to naturally occurring environmental conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance.

            Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity and oxidative stress are serious threats to agriculture and the natural status of the environment. Increased salinization of arable land is expected to have devastating global effects, resulting in 30% land loss within the next 25 years, and up to 50% by the year 2050. Therefore, breeding for drought and salinity stress tolerance in crop plants (for food supply) and in forest trees (a central component of the global ecosystem) should be given high research priority in plant biotechnology programs. Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. These genes are involved in the whole sequence of stress responses, such as signaling, transcriptional control, protection of membranes and proteins, and free-radical and toxic-compound scavenging. Recently, research into the molecular mechanisms of stress responses has started to bear fruit and, in parallel, genetic modification of stress tolerance has also shown promising results that may ultimately apply to agriculturally and ecologically important plants. The present review summarizes the recent advances in elucidating stress-response mechanisms and their biotechnological applications. Emphasis is placed on transgenic plants that have been engineered based on different stress-response mechanisms. The review examines the following aspects: regulatory controls, metabolite engineering, ion transport, antioxidants and detoxification, late embryogenesis abundant (LEA) and heat-shock proteins.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                01 October 2015
                2015
                : 6
                : 806
                Affiliations
                [1] 1Department of Vegetable Science, College of Horticulture, Northwest A&F University Yangling, China
                [2] 2Laboratory for Solanaceous Fruit Vegetable, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences Nanjing, China
                Author notes

                Edited by: Jun Yu, Beijing Institute of Genomics, China

                Reviewed by: Xun Xu, Beijing Genomics Institute, China; Jingfa Xiao, Beijing Institute of Genomics, China

                *Correspondence: Zhen-Hui Gong and Ming-Hui Lu, Department of Vegetable Science, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China zhgong@ 123456nwsuaf.edu.cn ; xnjacklu@ 123456nwsuaf.edu.cn ;
                Shu-Bin Wang, Laboratory for Solanaceous Fruit Vegetable, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu 210014, China wangsbpep@ 123456163.net

                This article was submitted to Plant Genetics and Genomics, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2015.00806
                4589653
                26483820
                53dd6aa4-135a-43d7-bac0-107dc05987e3
                Copyright © 2015 Guo, Liu, Lu, Zhai, Wang, Gong, Wang and Lu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 June 2015
                : 16 September 2015
                Page count
                Figures: 8, Tables: 2, Equations: 0, References: 52, Pages: 16, Words: 9311
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                capsicum annuum l.,cahsp20 genes,heat stress,expression profile,gene family
                Plant science & Botany
                capsicum annuum l., cahsp20 genes, heat stress, expression profile, gene family

                Comments

                Comment on this article

                scite_
                102
                17
                101
                3
                Smart Citations
                102
                17
                101
                3
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content205

                Cited by56

                Most referenced authors1,073