151
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Involvement of Oxidative Stress in Endoplasmic Reticulum Stress and Its Associated Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The endoplasmic reticulum (ER) is the major site of calcium storage and protein folding. It has a unique oxidizing-folding environment due to the predominant disulfide bond formation during the process of protein folding. Alterations in the oxidative environment of the ER and also intra-ER Ca 2+ cause the production of ER stress-induced reactive oxygen species (ROS). Protein disulfide isomerases, endoplasmic reticulum oxidoreductin-1, reduced glutathione and mitochondrial electron transport chain proteins also play crucial roles in ER stress-induced production of ROS. In this article, we discuss ER stress-associated ROS and related diseases, and the current understanding of the signaling transduction involved in ER stress.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The impact of the unfolded protein response on human disease

          A central function of the endoplasmic reticulum (ER) is to coordinate protein biosynthetic and secretory activities in the cell. Alterations in ER homeostasis cause accumulation of misfolded/unfolded proteins in the ER. To maintain ER homeostasis, eukaryotic cells have evolved the unfolded protein response (UPR), an essential adaptive intracellular signaling pathway that responds to metabolic, oxidative stress, and inflammatory response pathways. The UPR has been implicated in a variety of diseases including metabolic disease, neurodegenerative disease, inflammatory disease, and cancer. Signaling components of the UPR are emerging as potential targets for intervention and treatment of human disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidized redox state of glutathione in the endoplasmic reticulum.

            The redox state of the endoplasmic reticulum (ER) was measured with the peptide N-Acetyl-Asn-Tyr-Thr-Cys-NH2. The peptide diffused across cellular membranes; some became glycosylated and thus trapped within the secretory pathway, and its cysteine residue underwent reversible thiol-disulfide exchanges with the surrounding redox buffer. Glycosylated peptides from cells were disulfide-linked to glutathione, indicating that glutathione is the major redox buffer in the secretory pathway. The redox state of the secretory pathway was more oxidative than that of the cytosol; the ratio of reduced glutathione to the disulfide form (GSH/GSSG) within the secretory pathway ranged from 1:1 to 3:1, whereas the overall cellular GSH/GSSG ratio ranged from 30:1 to 100:1. Cytosolic glutathione was also transported into the lumen of microsomes in a cell-free system. Although how the ER maintains an oxidative environment is not known, these results suggest that the demonstrated preferential transport of GSSG compared to GSH into the ER lumen may contribute to this redox compartmentation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival.

              The protein kinase PERK couples protein folding in the endoplasmic reticulum (ER) to polypeptide biosynthesis by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha), attenuating translation initiation in response to ER stress. PERK is highly expressed in mouse pancreas, an organ active in protein secretion. Under physiological conditions, PERK was partially activated, accounting for much of the phosphorylated eIF2alpha in the pancreas. The exocrine and endocrine pancreas developed normally in Perk-/- mice. Postnatally, ER distention and activation of the ER stress transducer IRE1alpha accompanied increased cell death and led to progressive diabetes mellitus and exocrine pancreatic insufficiency. These findings suggest a special role for translational control in protecting secretory cells from ER stress.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                January 2013
                24 December 2012
                : 14
                : 1
                : 434-456
                Affiliations
                [1 ]Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: bidurbhandary@ 123456gmail.com (B.B.); marahattaanu@ 123456gmail.com (A.M.)
                [2 ]Department of Dental Pharmacology, Dental School, Wonkwang University, Iksan 570-749, South Korea
                Author notes
                [* ]Authors to whom correspondence should be addressed; E-Mails: hrkim@ 123456wonkwang.ac.kr (H.-R.K.); hjchae@ 123456jbnu.ac.kr (H.-J.C.); Tel.: +82-63-850-6640 (H.-R.K.); +82-63-270-3092 (H.-J.C.); Fax: +82-63-854-0285 (H.-R.K.); +82-63-275-8799 (H.-J.C.).
                Article
                ijms-14-00434
                10.3390/ijms14010434
                3565273
                23263672
                53d7cc8a-ff74-47b0-b0b8-59670cfa46a1
                © 2013 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 26 October 2012
                : 01 December 2012
                : 13 December 2012
                Categories
                Review

                Molecular biology
                er stress,er stress associated disease,er associated oxidative stress,disulfide bond formation,pdi,ero-1α,mitochondria electron transport chain

                Comments

                Comment on this article