37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ADAMs: key components in EGFR signalling and development

      Nature Reviews Molecular Cell Biology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ADAM (a disintegrin and metalloprotease) proteins are membrane-anchored metalloproteases that process and shed the ectodomains of membrane-anchored growth factors, cytokines and receptors. ADAMs also have essential roles in fertilization, angiogenesis, neurogenesis, heart development and cancer. Research on ADAMs and their role in protein ectodomain shedding is emerging as a fertile ground for gathering new insights into the functional regulation of membrane proteins.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: found

          The discovery of receptor tyrosine kinases: targets for cancer therapy.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The ADAMs family of metalloproteases: multidomain proteins with multiple functions.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer.

              The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor of the ErbB family that is abnormally activated in many epithelial tumors. Receptor activation leads to recruitment and phosphorylation of several downstream intracellular substrates, leading to mitogenic signaling and other tumor-promoting cellular activities. In human tumors, receptor overexpression correlates with a more aggressive clinical course. Taken together, these observations indicate that the EGFR is a promising target for cancer therapy. Monoclonal antibodies directed at the ligand-binding extracellular domain and low-molecular weight inhibitors of the receptor's tyrosine kinase are currently in advanced stages of clinical development. These agents prevent ligand-induced receptor activation and downstream signaling, which results in cell cycle arrest, promotion of apoptosis, and inhibition of angiogenesis. They also enhance the antitumor effects of chemotherapy and radiation therapy. In patients, anti-EGFR agents can be given safely at doses that fully inhibit receptor signaling, and single-agent activity has been observed against a variety of tumor types, including colon carcinoma, non-small-cell lung cancer, head and neck cancer, ovarian carcinoma, and renal cell carcinoma. Although antitumor activity is significant, responses have been seen in only a minority of the patients treated. In some clinical trials, anti-EGFR agents enhanced the effects of conventional chemotherapy and radiation therapy. Ongoing research efforts are directed at the selection of patients with EGFR-dependent tumors, identification of the differences among the various classes of agents, and new clinical development strategies.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Molecular Cell Biology
                Nat Rev Mol Cell Biol
                Springer Science and Business Media LLC
                1471-0072
                1471-0080
                January 2005
                January 2005
                : 6
                : 1
                : 32-43
                Article
                10.1038/nrm1548
                15688065
                53d5bde0-2195-4018-bc48-068f54d74d8e
                © 2005

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article