16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The structural basis of the interaction between the CD4 coreceptor and a class II major histocompatibility complex (MHC) is described. The crystal structure of a complex containing the human CD4 N-terminal two-domain fragment and the murine I-A kclass II MHC molecule with associated peptide (pMHCII) shows that only the “top corner” of the CD4 molecule directly contacts pMHCII. The CD4 Phe-43 side chain extends into a hydrophobic concavity formed by MHC residues from both α2 and β2 domains. A ternary model of the CD4-pMHCII-T-cell receptor (TCR) reveals that the complex appears V-shaped with the membrane-proximal pMHCII at the apex. This configuration excludes a direct TCR–CD4 interaction and suggests how TCR and CD4 signaling is coordinated around the antigenic pMHCII complex. Human CD4 binds to HIV gp120 in a manner strikingly similar to the way in which CD4 interacts with pMHCII. Additional contacts between gp120 and CD4 give the CD4–gp120 complex a greater affinity. Thus, ligation of the viral envelope glycoprotein to CD4 occludes the pMHCII-binding site on CD4, contributing to immunodeficiency.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.

          CLUSTAL X is a new windows interface for the widely-used progressive multiple sequence alignment program CLUSTAL W. The new system is easy to use, providing an integrated system for performing multiple sequence and profile alignments and analysing the results. CLUSTAL X displays the sequence alignment in a window on the screen. A versatile sequence colouring scheme allows the user to highlight conserved features in the alignment. Pull-down menus provide all the options required for traditional multiple sequence and profile alignment. New features include: the ability to cut-and-paste sequences to change the order of the alignment, selection of a subset of the sequences to be realigned, and selection of a sub-range of the alignment to be realigned and inserted back into the original alignment. Alignment quality analysis can be performed and low-scoring segments or exceptional residues can be highlighted. Quality analysis and realignment of selected residue ranges provide the user with a powerful tool to improve and refine difficult alignments and to trap errors in input sequences. CLUSTAL X has been compiled on SUN Solaris, IRIX5.3 on Silicon Graphics, Digital UNIX on DECstations, Microsoft Windows (32 bit) for PCs, Linux ELF for x86 PCs, and Macintosh PowerMac.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1.

            The three-dimensional structure of the class II histocompatibility glycoprotein HLA-DR1 from human B-cell membranes has been determined by X-ray crystallography and is similar to that of class I HLA. Peptides are bound in an extended conformation that projects from both ends of an 'open-ended' antigen-binding groove. A prominent non-polar pocket into which an 'anchoring' peptide side chain fits is near one end of the binding groove. A dimer of the class II alpha beta heterodimers is seen in the crystal forms of HLA-DR1, suggesting class II HLA dimerization as a mechanism for initiating the cytoplasmic signalling events in T-cell activation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              AMoRe: an automated package for molecular replacement

              J. Navaza (1994)
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc. Natl. Acad. Sci. U.S.A.
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                September 11 2001
                September 04 2001
                September 11 2001
                : 98
                : 19
                : 10799-10804
                Affiliations
                [1 ]Laboratory of Immunobiology and Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, and Departments of Pediatrics, Biological Chemistry and Molecular Pharmacology, and Medicine, Harvard Medical School, Boston, MA 02115; and Biosciences Division, Argonne National Laboratory, Argonne, IL 60439
                Article
                10.1073/pnas.191124098
                59561
                11535811
                539cfef9-bbca-4a54-ae74-2bdf1daf8162
                © 2001
                History

                Comments

                Comment on this article