49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells) transcription factor family is a pleiotropic regulator of many cellular signaling pathways, providing a mechanism for the cells in response to a wide variety of stimuli linking to inflammation. The stimulated cells will be regulated by not only the canonical but also non-canonical NF-κB pathways. To initiate both of these pathways, IκB-degradation triggers NF-κB release and the nuclear translocated-heterodimer (or homodimer) can associate with the κB sites of promoter to regulate the gene transcriptions. NF-κB ubiquitously expresses in neurons and the constitutive NF-κB activation is associated with processing of neuronal information. NF-κB can regulate the transcription of genes such as chemokines, cytokines, proinflammatory enzymes, adhesion molecules, proinflammatory transcription factors, and other factors to modulate the neuronal survival. In neuronal insult, NF-κB constitutively active in neuron cell bodies can protect neurons against different injuries and regulate the neuronal inflammatory reactions. Besides neurons, NF-κB transcription factors are abundant in glial cells and cerebral blood vessels and the diverse functions of NF-κB also regulate the inflammatory reaction around the neuronal environment. NF-κB transcription factors are abundant in the brain and exhibit diverse functions. Several central nerve system (CNS) diseases are linked to NF-κB activated by inflammatory mediators. The RelA and c-Rel expression produce opposite effects on neuronal survival. Importantly, c-Rel expression in CNS plays a critical role in anti-apoptosis and reduces the age-related behaviors. Moreover, the different subunits of NF-κB dimer formation can modulate the neuroninflammation, neuronal protection, or neurotoxicity. The diverse functions of NF-κB depend on the subunits of the NF-κB dimer-formation which enable us to develop a therapeutic approach to neuroinflammation based on a new concept of inflammation as a strategic tool in neuronal cells. However, the detail role of NF-κB in neuroinflammation, remains to be clarified. In the present article, we provide an updated review of the current state of our knowledge about relationship between NF-κB and neuroinflammation.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Function and activation of NF-kappa B in the immune system.

          NF-kappa B is a ubiquitous transcription factor. Nevertheless, its properties seem to be most extensively exploited in cells of the immune system. Among these properties are NF-kappa B's rapid posttranslational activation in response to many pathogenic signals, its direct participation in cytoplasmic/nuclear signaling, and its potency to activate transcription of a great variety of genes encoding immunologically relevant proteins. In vertebrates, five distinct DNA binding subunits are currently known which might extensively heterodimerize, thereby forming complexes with distinct transcriptional activity, DNA sequence specificity, and cell type- and cell stage-specific distribution. The activity of DNA binding NF-kappa B dimers is tightly controlled by accessory proteins called I kappa B subunits of which there are also five different species currently known in vertebrates. I kappa B proteins inhibit DNA binding and prevent nuclear uptake of NF-kappa B complexes. An exception is the Bcl-3 protein which in addition can function as a transcription activating subunit in th nucleus. Other I kappa B proteins are rather involved in terminating NF-kappa B's activity in the nucleus. The intracellular events that lead to the inactivation of I kappa B, i.e. the activation of NF-kappa B, are complex. They involve phosphorylation and proteolytic reactions and seem to be controlled by the cells' redox status. Interference with the activation or activity of NF-kappa B may be beneficial in suppressing toxic/septic shock, graft-vs-host reactions, acute inflammatory reactions, acute phase response, and radiation damage. The inhibition of NF-kappa B activation by antioxidants and specific protease inhibitors may provide a pharmacological basis for interfering with these acute processes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibiting NF-κB activation by small molecules as a therapeutic strategy.

              Because nuclear factor-κB (NF-κB) is a ubiquitously expressed proinflammatory transcription factor that regulates the expression of over 500 genes involved in cellular transformation, survival, proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-κB signaling pathway has become a potential target for pharmacological intervention. A wide variety of agents can activate NF-κB through canonical and noncanonical pathways. Canonical pathway involves various steps including the phosphorylation, ubiquitination, and degradation of the inhibitor of NF-κB (IκBα), which leads to the nuclear translocation of the p50-p65 subunits of NF-κB followed by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus, agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitination, acetylation, methylation, and DNA binding steps have been identified as NF-κB inhibitors. Because of the critical role of NF-κB in cancer and various chronic diseases, numerous inhibitors of NF-κB have been identified. In this review, however, we describe only small molecules that suppress NF-κB activation, and the mechanism by which they block this pathway. Copyright © 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                18 December 2015
                2015
                : 8
                : 77
                Affiliations
                [1] 1Institute of Neuroscience, National Chengchi University Taipei, Taiwan
                [2] 2Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
                Author notes

                Edited by: Jun Yan, University of Queensland, Australia

                Reviewed by: Walter J. Lukiw, Louisiana State University Health Sciences Center, USA; Shuchi Mittal, Harvard Medical School, USA

                *Correspondence: Chuen-Mao Yang, chuenmao@ 123456mail.cgu.edu.tw
                Article
                10.3389/fnmol.2015.00077
                4683208
                26733801
                53973479-083d-4f28-ae9b-5e68040a472a
                Copyright © 2015 Shih, Wang and Yang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 August 2015
                : 30 November 2015
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 98, Pages: 8, Words: 0
                Funding
                Funded by: Department of Science and Technology, Ministry of Science and Technology 10.13039/501100001409
                Award ID: MOST 104-2320-B-182-010
                Funded by: Ministry of Education, Taiwan
                Award ID: EMRPD1E1641
                Funded by: Chang Gung Medical Research Foundation 10.13039/501100004606
                Award ID: CMRPD1C0103
                Funded by: Chang Gung Medical Research Foundation
                Award ID: CMRPD1B0383
                Funded by: Chang Gung Medical Research Foundation
                Award ID: CMRPD1C0563
                Funded by: Chang Gung Medical Research Foundation
                Award ID: CMRPD1B0332
                Categories
                Neuroscience
                Mini Review

                Neurosciences
                nf-kappab,neuroinflammation,neuroprotection,adhesion molecules,proinflammatory transcription factors

                Comments

                Comment on this article