3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cannabidiol treatment improves metabolic profile and decreases hypothalamic inflammation caused by maternal obesity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          The implications of maternal overnutrition on offspring metabolic and neuroimmune development are well-known. Increasing evidence now suggests that maternal obesity and poor dietary habits during pregnancy and lactation can increase the risk of central and peripheral metabolic dysregulation in the offspring, but the mechanisms are not sufficiently established. Furthermore, despite many studies addressing preventive measures targeted at the mother, very few propose practical approaches to treat the damages when they are already installed.

          Methods

          Here we investigated the potential of cannabidiol (CBD) treatment to attenuate the effects of maternal obesity induced by a cafeteria diet on hypothalamic inflammation and the peripheral metabolic profile of the offspring in Wistar rats.

          Results

          We have observed that maternal obesity induced a range of metabolic imbalances in the offspring in a sex-dependant manner, with higher deposition of visceral white adipose tissue, increased plasma fasting glucose and lipopolysaccharides (LPS) levels in both sexes, but the increase in serum cholesterol and triglycerides only occurred in females, while the increase in plasma insulin and the homeostatic model assessment index (HOMA-IR) was only observed in male offspring. We also found an overexpression of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα), interleukin (IL) 6, and interleukin (IL) 1β in the hypothalamus, a trademark of neuroinflammation. Interestingly, the expression of GFAP, a marker for astrogliosis, was reduced in the offspring of obese mothers, indicating an adaptive mechanism to in utero neuroinflammation. Treatment with 50 mg/kg CBD oil by oral gavage was able to reduce white adipose tissue and revert insulin resistance in males, reduce plasma triglycerides in females, and attenuate plasma LPS levels and overexpression of TNFα and IL6 in the hypothalamus of both sexes.

          Discussion

          Together, these results indicate an intricate interplay between peripheral and central counterparts in both the pathogenicity of maternal obesity and the therapeutic effects of CBD. In this context, the impairment of internal hypothalamic circuitry caused by neuroinflammation runs in tandem with the disruptions of important metabolic processes, which can be attenuated by CBD treatment in both ends.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: not found

          A core gut microbiome in obese and lean twins

          The human distal gut harbors a vast ensemble of microbes (the microbiota) that provide us with important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides1–6. Studies of a small number of unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes6–8, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is utilized and stored3–5. To address the question of how host genotype, environmental exposures, and host adiposity influence the gut microbiome, we have characterized the fecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person’s gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable ‘core microbiome’ at the gene, rather than at the organismal lineage level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity, and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiologic states (obese versus lean).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales.

            Although the rise in ischaemic heart disease in England and Wales has been associated with increasing prosperity, mortality rates are highest in the least affluent areas. On division of the country into two hundred and twelve local authority areas a strong geographical relation was found between ischaemic heart disease mortality rates in 1968-78 and infant mortality in 1921-25. Of the twenty-four other common causes of death only bronchitis, stomach cancer, and rheumatic heart disease were similarly related to infant mortality. These diseases are associated with poor living conditions and mortality from them is declining. Ischaemic heart disease is strongly correlated with both neonatal and postneonatal mortality. It is suggested that poor nutrition in early life increases susceptibility to the effects of an affluent diet.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of gut microbes on nutrient absorption and energy regulation.

              Malnutrition may manifest as either obesity or undernutrition. Accumulating evidence suggests that the gut microbiota plays an important role in the harvest, storage, and expenditure of energy obtained from the diet. The composition of the gut microbiota has been shown to differ between lean and obese humans and mice; however, the specific roles that individual gut microbes play in energy harvest remain uncertain. The gut microbiota may also influence the development of conditions characterized by chronic low-level inflammation, such as obesity, through systemic exposure to bacterial lipopolysaccharide derived from the gut microbiota. In this review, the role of the gut microbiota in energy harvest and fat storage is explored, as well as differences in the microbiota in obesity and undernutrition.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Nutr
                Front Nutr
                Front. Nutr.
                Frontiers in Nutrition
                Frontiers Media S.A.
                2296-861X
                09 March 2023
                2023
                : 10
                : 1150189
                Affiliations
                [1] 1Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre, Rio Grande do Sul, Brazil
                [2] 2Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre, Rio Grande do Sul, Brazil
                [3] 3Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre, Rio Grande do Sul, Brazil
                Author notes

                Edited by: Barbara Shukitt-Hale, Tufts University, United States

                Reviewed by: Chia-Shan Wu, Texas A&M University, United States; Maria Vittoria Micioni Di Bonaventura, University of Camerino, Italy

                *Correspondence: Renata Padilha Guedes, renata.guedes@ 123456ufcspa.edu.br

                This article was submitted to Nutrition, Psychology and Brain Health, a section of the journal Frontiers in Nutrition

                Article
                10.3389/fnut.2023.1150189
                10033544
                36969815
                53714ff3-e00c-43c8-9454-255641a6f8cf
                Copyright © 2023 Rodrigues, Jantsch, Fraga, Dias, Eller, De Oliveira, Giovenardi and Guedes.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 January 2023
                : 24 February 2023
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 146, Pages: 15, Words: 11704
                Funding
                This work was funded by the Brazilian National Council for Scientific and Technological Development (CNPq) and Federal University of Health Sciences of Porto Alegre.
                Categories
                Nutrition
                Original Research

                maternal obesity,neuroinflammation,cannabidiol,hypothalamus,insulin resistance

                Comments

                Comment on this article