16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lipoparticles for Synergistic Chemo-Photodynamic Therapy to Ovarian Carcinoma Cells: In vitro and in vivo Assessments

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Lipoparticles are the core-shell type lipid-polymer hybrid systems comprising polymeric nanoparticle core enveloped by single or multiple pegylated lipid layers (shell), thereby melding the biomimetic properties of long-circulating vesicles as well as the mechanical advantages of the nanoparticles. The present study was aimed at the development of such an integrated system, combining the photodynamic and chemotherapeutic approaches for the treatment of multidrug-resistant cancers.

          Methods

          For this rationale, two different sized Pirarubicin (THP) loaded poly lactic-co-glycolic acid (PLGA) nanoparticles were prepared by emulsion solvent evaporation technique, whereas liposomes containing Temoporfin (mTHPC) were prepared by lipid film hydration method. Physicochemical and morphological characterizations were done using dynamic light scattering, laser doppler anemometry, atomic force microscopy, and transmission electron microscopy. The quantitative assessment of cell damage was determined using MTT and reactive oxygen species (ROS) assay. The biocompatibility of the nanoformulations was evaluated with serum stability testing, haemocompatibility as well as acute in vivo toxicity using female albino (BALB/c) mice.

          Results and Conclusion

          The mean hydrodynamic diameter of the formulations was found between 108.80 ± 2.10 to 405.70 ± 10.00 nm with the zeta (ζ) potential ranging from −12.70 ± 1.20 to 5.90 ± 1.10 mV. Based on the physicochemical evaluations, the selected THP nanoparticles were coated with mTHPC liposomes to produce lipid-coated nanoparticles (LCNPs). A significant (p< 0.001) cytotoxicity synergism was evident in LCNPs when irradiated at 652 nm, using an LED device. No incidence of genotoxicity was observed as seen with the comet assay. The LCNPs decreased the generalized in vivo toxicity as compared to the free drugs and was evident from the serum biochemical profile, visceral body index, liver function tests as well as renal function tests. The histopathological examinations of the vital organs revealed no significant evidence of toxicity suggesting the safety and efficacy of our lipid-polymer hybrid system.

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Role of reactive oxygen species (ROS) in apoptosis induction.

          Reactive oxygen species (ROS) and mitochondria play an important role in apoptosis induction under both physiologic and pathologic conditions. Interestingly, mitochondria are both source and target of ROS. Cytochrome c release from mitochondria, that triggers caspase activation, appears to be largely mediated by direct or indirect ROS action. On the other hand, ROS have also anti-apoptotic effects. This review focuses on the role of ROS in the regulation of apoptosis, especially in inflammatory cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biodegradable polymeric nanoparticles based drug delivery systems.

            Biodegradable nanoparticles have been used frequently as drug delivery vehicles due to its grand bioavailability, better encapsulation, control release and less toxic properties. Various nanoparticulate systems, general synthesis and encapsulation process, control release and improvement of therapeutic value of nanoencapsulated drugs are covered in this review. We have highlighted the impact of nanoencapsulation of various disease related drugs on biodegradable nanoparticles such as PLGA, PLA, chitosan, gelatin, polycaprolactone and poly-alkyl-cyanoacrylates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes.

              We investigated the effects of inhibitors of clathrin-mediated endocytosis (chlorpromazine and K(+) depletion) and of caveolae-mediated uptake (filipin and genistein) on internalization of FITC-poly-l-lysine-labeled DOTAP/DNA lipoplexes and PEI/DNA polyplexes by A549 pneumocytes and HeLa cells and on the transfection efficiencies of these complexes with the luciferase gene. Uptake of the complexes was assayed by fluorescence-activated cell sorting. Lipoplex internalization was inhibited by chlorpromazine and K(+) depletion but unaffected by filipin and genistein. In contrast, polyplex internalization was inhibited by all four inhibitors. We conclude that lipoplex uptake proceeds only by clathrin-mediated endocytosis, while polyplexes are taken up by two mechanisms, one involving caveolae and the other clathrin-coated pits. Transfection by lipoplexes was entirely abolished by blocking clathrin-mediated endocytosis, whereas inhibition of the caveolae pathway had no effect. By contrast, transfection mediated by polyplexes was completely blocked by genistein and filipin but was unaffected by inhibitors of clathrin-mediated endocytosis. Fluorescence colocalization studies with a lysosomal marker, AlexaFluor-dextran, revealed that polyplexes taken up by clathrin-mediated endocytosis are targeted to the lysosomal compartment for degradation, while the polyplexes internalized via caveolae escape this compartment, permitting efficient transfection.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                ijn
                intjnano
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                11 February 2021
                2021
                : 16
                : 951-976
                Affiliations
                [1 ]Department of Pharmaceutics and Biopharmaceutics, University of Marburg , Marburg, Germany
                [2 ]Faculty of Pharmacy, The University of Lahore , Lahore, Pakistan
                [3 ]Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus , Lahore, Pakistan
                [4 ]Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University , Lahore, Pakistan
                [5 ]Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen , Copenhagen, Denmark
                [6 ]Faculty of Pharmaceutical Sciences, GC University Faisalabad , Faisalabad, Pakistan
                Author notes
                Correspondence: Udo Bakowsky Department of Pharmaceutics and Biopharmaceutics, University of Marburg , Robert Koch Str. 4, Marburg, 35037, GermanyTel + 49 6421 28 25884Fax + 49 6421 28 27016 Email ubakowsky@aol.com
                Author information
                http://orcid.org/0000-0002-2480-0059
                http://orcid.org/0000-0002-3895-0453
                Article
                285950
                10.2147/IJN.S285950
                7884954
                536e0618-8e76-4575-9954-32fae2499848
                © 2021 Ali et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 10 October 2020
                : 17 December 2020
                Page count
                Figures: 13, Tables: 7, References: 66, Pages: 26
                Categories
                Original Research

                Molecular medicine
                atomic force microscopy,facs,in vivo,in vitro cytotoxicity,lipid-polymer hybrid nanoparticles,photodynamic therapy,plga nanoparticles,tem

                Comments

                Comment on this article