5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Methane Emissions from Superemitting Coal Mines in Australia Quantified Using TROPOMI Satellite Observations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two years of satellite observations were used to quantify methane emissions from coal mines in Queensland, the largest coal-producing state in Australia. The six analyzed surface and underground coal mines are estimated to emit 570 ± 98 Gg a –1 in 2018–2019. Together, they account for 7% of the national coal production while emitting 55 ± 10% of the reported methane emission from coal mining in Australia. Our results indicate that for two of the three locations, our satellite-based estimates are significantly higher than reported to the Australian government. Most remarkably, 40% of the quantified emission came from a single surface mine (Hail Creek) located in a methane-rich coal basin. Our findings call for increased monitoring and investment in methane recovery technologies for both surface and underground mines.

          Abstract

          Using satellite detection, Australian coal mines with anomalous high methane emissions were identified, which make promising targets for emission mitigation.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The Global Methane Budget 2000–2017

          Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning. The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Simultaneously mitigating near-term climate change and improving human health and food security.

              Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide-reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.
                Bookmark

                Author and article information

                Journal
                Environ Sci Technol
                Environ Sci Technol
                es
                esthag
                Environmental Science & Technology
                American Chemical Society
                0013-936X
                1520-5851
                29 November 2021
                21 December 2021
                29 November 2022
                : 55
                : 24
                : 16573-16580
                Affiliations
                []SRON Netherlands Institute for Space Research , 3584 CA Utrecht, The Netherlands
                []Department of Climate, Air and Sustainability, TNO , 3584 CB Utrecht, The Netherlands
                [§ ]Department of Earth Sciences, Vrije Universiteit, Amsterdam , 1081 HV Amsterdam, The Netherlands
                Author notes
                Author information
                https://orcid.org/0000-0002-7337-683X
                https://orcid.org/0000-0001-8118-0311
                Article
                10.1021/acs.est.1c03976
                8698155
                34842427
                535a13f2-c87f-4257-9665-edc280fa98db
                © 2021 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 16 June 2021
                : 26 October 2021
                : 25 October 2021
                Funding
                Funded by: Netherlands Space Office, doi 10.13039/501100003001;
                Award ID: NA
                Funded by: Nederlandse Organisatie voor Wetenschappelijk Onderzoek, doi 10.13039/501100003958;
                Award ID: 15597
                Categories
                Article
                Custom metadata
                es1c03976
                es1c03976

                General environmental science
                underground mines,surface mines,source rate,emission inventory,superemitters

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content114

                Cited by23

                Most referenced authors797