18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use-dependent block of the voltage-gated Na + channel by tetrodotoxin and saxitoxin: Effect of pore mutations that change ionic selectivity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Voltage-gated Na + channels (NaV channels) are specifically blocked by guanidinium toxins such as tetrodotoxin (TTX) and saxitoxin (STX) with nanomolar to micromolar affinity depending on key amino acid substitutions in the outer vestibule of the channel that vary with NaV gene isoforms. All NaV channels that have been studied exhibit a use-dependent enhancement of TTX/STX affinity when the channel is stimulated with brief repetitive voltage depolarizations from a hyperpolarized starting voltage. Two models have been proposed to explain the mechanism of TTX/STX use dependence: a conformational mechanism and a trapped ion mechanism. In this study, we used selectivity filter mutations (K1237R, K1237A, and K1237H) of the rat muscle NaV1.4 channel that are known to alter ionic selectivity and Ca 2+ permeability to test the trapped ion mechanism, which attributes use-dependent enhancement of toxin affinity to electrostatic repulsion between the bound toxin and Ca 2+ or Na + ions trapped inside the channel vestibule in the closed state. Our results indicate that TTX/STX use dependence is not relieved by mutations that enhance Ca 2+ permeability, suggesting that ion–toxin repulsion is not the primary factor that determines use dependence. Evidence now favors the idea that TTX/STX use dependence arises from conformational coupling of the voltage sensor domain or domains with residues in the toxin-binding site that are also involved in slow inactivation.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Ionic Blockage of Sodium Channels in Nerve

          Increasing the hydrogen ion concentration of the bathing medium reversibly depresses the sodium permeability of voltage-clamped frog nerves. The depression depends on membrane voltage: changing from pH 7 to pH 5 causes a 60% reduction in sodium permeability at +20 mV, but only a 20% reduction at +180 mV. This voltage-dependent block of sodium channels by hydrogen ions is explained by assuming that hydrogen ions enter the open sodium channel and bind there, preventing sodium ion passage. The voltage dependence arises because the binding site is assumed to lie far enough across the membrane for bound ions to be affected by part of the potential difference across the membrane. Equations are derived for the general case where the blocking ion enters the channel from either side of the membrane. For H+ ion blockage, a simpler model, in which H+ enters the channel only from the bathing medium, is found to be sufficient. The dissociation constant of H+ ions from the channel site, 3.9 x 10-6 M (pK a 5.4), is like that of a carboxylic acid. From the voltage dependence of the block, this acid site is about one-quarter of the way across the membrane potential from the outside. In addition to blocking as described by the model, hydrogen ions also shift the responses of sodium channel "gates" to voltage, probably by altering the surface potential of the nerve. Evidence for voltage-dependent blockage by calcium ions is also presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Calcium channel characteristics conferred on the sodium channel by single mutations.

            The sodium channel, one of the family of structurally homologous voltage-gated ion channels, differs from other members, such as the calcium and the potassium channels, in its high selectivity for Na+. This selectivity presumably reflects a distinct structure of its ion-conducting pore. We have recently identified two clusters of predominantly negatively charged amino-acid residues, located at equivalent positions in the four internal repeats of the sodium channel as the main determinants of sensitivity to the blockers tetrodotoxin and saxitoxin. All site-directed mutations reducing net negative charge at these positions also caused a marked decrease in single-channel conductance. Thus these two amino-acid clusters probably form part of the extracellular mouth and/or the pore wall of the sodium channel. We report here the effects on ion selectivity of replacing lysine at position 1,422 in repeat III and/or alanine at position 1,714 in repeat IV of rat sodium channel II (ref. 3), each located in one of the two clusters, by glutamic acid, which occurs at the equivalent positions in calcium channels. These amino-acid substitutions, unlike other substitutions in the adjacent regions, alter ion-selection properties of the sodium channel to resemble those of calcium channels. This result indicates that lysine 1,422 and alanine 1,714 are critical in determining the ion selectivity of the sodium channel, suggesting that these residues constitute part of the selectivity filter of the channel.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR.

              The active site of potassium (K+) channels catalyses the transport of K+ ions across the plasma membrane--similar to the catalytic function of the active site of an enzyme--and is inhibited by toxins from scorpion venom. On the basis of the conserved structures of K+ pore regions and scorpion toxins, detailed structures for the K+ channel-scorpion toxin binding interface have been proposed. In these models and in previous solution-state nuclear magnetic resonance (NMR) studies using detergent-solubilized membrane proteins, scorpion toxins were docked to the extracellular entrance of the K+ channel pore assuming rigid, preformed binding sites. Using high-resolution solid-state NMR spectroscopy, here we show that high-affinity binding of the scorpion toxin kaliotoxin to a chimaeric K+ channel (KcsA-Kv1.3) is associated with significant structural rearrangements in both molecules. Our approach involves a combined analysis of chemical shifts and proton-proton distances and demonstrates that solid-state NMR is a sensitive method for analysing the structure of a membrane protein-inhibitor complex. We propose that structural flexibility of the K+ channel and the toxin represents an important determinant for the high specificity of toxin-K+ channel interactions.
                Bookmark

                Author and article information

                Journal
                J Gen Physiol
                J. Gen. Physiol
                jgp
                The Journal of General Physiology
                The Rockefeller University Press
                0022-1295
                1540-7748
                October 2012
                : 140
                : 4
                : 435-454
                Affiliations
                [1 ]Vertex Pharmaceuticals Inc., San Diego, CA 92121
                [2 ]Institut de Pharmacologie et Toxicologie de l’Université, CH-1005 Lausanne, Switzerland
                [3 ]Nanobiology Department, Sandia National Laboratories, Albuquerque, NM 87185
                [4 ]Department of Biochemistry and Molecular Biology, The University of New Mexico School of Medicine, Albuquerque, NM 87131
                Author notes
                Correspondence to Edward G. Moczydlowski: egmoczy@ 123456sandia.gov
                Article
                201210853
                10.1085/jgp.201210853
                3457692
                23008436
                5334d253-994f-491f-9706-61f65169f123
                © 2012 Huang et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 28 June 2012
                : 31 August 2012
                Categories
                Article

                Anatomy & Physiology
                Anatomy & Physiology

                Comments

                Comment on this article