4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Resveratrol sustains intestinal barrier integrity, improves antioxidant capacity, and alleviates inflammation in the jejunum of ducks exposed to acute heat stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resveratrol, a natural antioxidant, anti-inflammatory plant extract, was found to have a protective effect in poultry subjected to heat stress. In this study, we strove to characterize resveratrol on intestinal of duck exposed to acute heat stress and investigate the underlying mechanism. A total of 120 Shan-ma ducks (60 days old) were randomly divided into 2 groups. The control group was fed a basal diet, and the resveratrol group was fed a basal diet supplemented with 400 mg/kg resveratrol. Animals in 2 groups were kept at a temperature of 24°C ± 2°C for 15 d. Then, animals of both groups were placed in an artificial climate room at 39°C. Twelve ducks of each group were sacrificed for sampling at 0, 30, and 60 min, respectively. Results indicated that resveratrol increased the ratio of villus height to crypt depth, increased the number of goblet cells, and reduced the histopathological damage of jejunum caused by acute heat stress. Furthermore, the gene expression of heat shock proteins ( HSP60, HSP70, and HSP90) and tight junction proteins ( CLDN1 and OCLN) was significantly increased in the resveratrol group compared to that in the control groups. Simultaneously, resveratrol significantly activated the SIRT1-NRF1/NRF2 signaling pathways, improved ATP level of jejunum, and increased SOD and CAT antioxidant enzymes activities. In addition, we found that the NF-κB/ NLRP3 inflammasome signaling pathways were repressed under acute heat stress. Meanwhile, supplement resveratrol further inhibited the NLRP3 inflammasome pathway, decreased protein level of NLRP3 and caspase1 p20, reduced the secretion of IL-1β. Taken together, our results indicate that resveratrol against the oxidative damage and inflammation injury in duck jejunum induced by heat stress via active SIRT1 signaling pathways.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.

          Diminished mitochondrial oxidative phosphorylation and aerobic capacity are associated with reduced longevity. We tested whether resveratrol (RSV), which is known to extend lifespan, impacts mitochondrial function and metabolic homeostasis. Treatment of mice with RSV significantly increased their aerobic capacity, as evidenced by their increased running time and consumption of oxygen in muscle fibers. RSV's effects were associated with an induction of genes for oxidative phosphorylation and mitochondrial biogenesis and were largely explained by an RSV-mediated decrease in PGC-1alpha acetylation and an increase in PGC-1alpha activity. This mechanism is consistent with RSV being a known activator of the protein deacetylase, SIRT1, and by the lack of effect of RSV in SIRT1(-/-) MEFs. Importantly, RSV treatment protected mice against diet-induced-obesity and insulin resistance. These pharmacological effects of RSV combined with the association of three Sirt1 SNPs and energy homeostasis in Finnish subjects implicates SIRT1 as a key regulator of energy and metabolic homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bioavailability of resveratrol.

            This paper reviews our current understanding of the absorption, bioavailability, and metabolism of resveratrol, with an emphasis on humans. The oral absorption of resveratrol in humans is about 75% and is thought to occur mainly by transepithelial diffusion. Extensive metabolism in the intestine and liver results in an oral bioavailability considerably less than 1%. Dose escalation and repeated dose administration of resveratrol does not appear to alter this significantly. Metabolic studies, both in plasma and in urine, have revealed major metabolites to be glucuronides and sulfates of resveratrol. However, reduced dihydroresveratrol conjugates, in addition to highly polar unknown products, may account for as much as 50% of an oral resveratrol dose. Although major sites of metabolism include the intestine and liver (as expected), colonic bacterial metabolism may be more important than previously thought. Deconjugation enzymes such as β-glucuronidase and sulfatase, as well as specific tissue accumulation of resveratrol, may enhance resveratrol efficacy at target sites. Resveratrol analogs, such as methylated derivatives with improved bioavailability, may be important in future research. © 2011 New York Academy of Sciences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of tight junction permeability by intestinal bacteria and dietary components.

              The human intestinal epithelium is formed by a single layer of epithelial cells that separates the intestinal lumen from the underlying lamina propria. The space between these cells is sealed by tight junctions (TJ), which regulate the permeability of the intestinal barrier. TJ are complex protein structures comprised of transmembrane proteins, which interact with the actin cytoskeleton via plaque proteins. Signaling pathways involved in the assembly, disassembly, and maintenance of TJ are controlled by a number of signaling molecules, such as protein kinase C, mitogen-activated protein kinases, myosin light chain kinase, and Rho GTPases. The intestinal barrier is a complex environment exposed to many dietary components and many commensal bacteria. Studies have shown that the intestinal bacteria target various intracellular pathways, change the expression and distribution of TJ proteins, and thereby regulate intestinal barrier function. The presence of some commensal and probiotic strains leads to an increase in TJ proteins at the cell boundaries and in some cases prevents or reverses the adverse effects of pathogens. Various dietary components are also known to regulate epithelial permeability by modifying expression and localization of TJ proteins.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                02 September 2021
                November 2021
                02 September 2021
                : 100
                : 11
                : 101459
                Affiliations
                [* ]Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China
                []Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
                Author notes
                [1 ]Corresponding author: lwjhero123@ 123456126.com
                Article
                S0032-5791(21)00482-X 101459
                10.1016/j.psj.2021.101459
                8498463
                34614430
                532433fa-ed94-4ffe-826b-8fb27e033885
                © 2021 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 7 July 2021
                : 26 August 2021
                Categories
                IMMUNOLOGY, HEALTH AND DISEASE

                resveratrol,acute heat stress,jejunum,sirt1
                resveratrol, acute heat stress, jejunum, sirt1

                Comments

                Comment on this article