2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Risk of myocarditis and pericarditis after a COVID-19 mRNA vaccine booster and after COVID-19 in those with and without prior SARS-CoV-2 infection: A self-controlled case series analysis in England

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          An increased risk of myocarditis or pericarditis after priming with mRNA Coronavirus Disease 2019 (COVID-19) vaccines has been shown but information on the risk post-booster is limited. With the now high prevalence of prior Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, we assessed the effect of prior infection on the vaccine risk and the risk from COVID-19 reinfection.

          Methods and findings

          We conducted a self-controlled case series analysis of hospital admissions for myocarditis or pericarditis in England between 22 February 2021 and 6 February 2022 in the 50 million individuals eligible to receive the adenovirus-vectored vaccine (ChAdOx1-S) for priming or an mRNA vaccine (BNT162b2 or mRNA-1273) for priming or boosting. Myocarditis and pericarditis admissions were extracted from the Secondary Uses Service (SUS) database in England and vaccination histories from the National Immunisation Management System (NIMS); prior infections were obtained from the UK Health Security Agency’s Second-Generation Surveillance Systems. The relative incidence (RI) of admission within 0 to 6 and 7 to 14 days of vaccination compared with periods outside these risk windows stratified by age, dose, and prior SARS-CoV-2 infection for individuals aged 12 to 101 years was estimated. The RI within 27 days of an infection was assessed in the same model. There were 2,284 admissions for myocarditis and 1,651 for pericarditis in the study period. Elevated RIs were only observed in 16- to 39-year-olds 0 to 6 days postvaccination, mainly in males for myocarditis. Both mRNA vaccines showed elevated RIs after first, second, and third doses with the highest RIs after a second dose 5.34 (95% confidence interval (CI) [3.81, 7.48]; p < 0.001) for BNT162b2 and 56.48 (95% CI [33.95, 93.97]; p < 0.001) for mRNA-1273 compared with 4.38 (95% CI [2.59, 7.38]; p < 0.001) and 7.88 (95% CI [4.02, 15.44]; p < 0.001), respectively, after a third dose. For ChAdOx1-S, an elevated RI was only observed after a first dose, RI 5.23 (95% CI [2.48, 11.01]; p < 0.001). An elevated risk of admission for pericarditis was only observed 0 to 6 days after a second dose of mRNA-1273 vaccine in 16 to 39 year olds, RI 4.84 (95% CI [1.62, 14.01]; p = 0.004). RIs were lower in those with a prior SARS-CoV-2 infection than in those without, 2.47 (95% CI [1.32,4.63]; p = 0.005) versus 4.45 (95% [3.12, 6.34]; p = 0.001) after a second BNT162b2 dose, and 19.07 (95% CI [8.62, 42.19]; p < 0.001) versus 37.2 (95% CI [22.18, 62.38]; p < 0.001) for mRNA-1273 (myocarditis and pericarditis outcomes combined). RIs 1 to 27 days postinfection were elevated in all ages and were marginally lower for breakthrough infections, 2.33 (95% CI [1.96, 2.76]; p < 0.001) compared with 3.32 (95% CI [2.54, 4.33]; p < 0.001) in vaccine-naïve individuals respectively.

          Conclusions

          We observed an increased risk of myocarditis within the first week after priming and booster doses of mRNA vaccines, predominantly in males under 40 years with the highest risks after a second dose. The risk difference between the second and the third doses was particularly marked for the mRNA-1273 vaccine that contains half the amount of mRNA when used for boosting than priming. The lower risk in those with prior SARS-CoV-2 infection, and lack of an enhanced effect post-booster, does not suggest a spike-directed immune mechanism. Research to understand the mechanism of vaccine-associated myocarditis and to document the risk with bivalent mRNA vaccines is warranted.

          Abstract

          In a nationwide, self-controlled case series analysis conducted in England, Julia Stowe and colleagues investigate the effect of prior SARS CoV-2 infection on the risk of hospital admission for myocarditis or pericarditis after primary or booster vaccination and after a confirmed SARS-CoV-2 infection.

          Author summary

          Why was this study done?
          • Primary and booster immunisation with mRNA Coronavirus Disease 2019 (COVID-19) vaccine have been associated with an increased risk of acute myocarditis.

          • Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection may itself cause myocarditis or pericarditis.

          • However, the effect of prior vaccination on this risk, and on the risk after a reinfection, has not been investigated.

          What did the researchers do and find?
          • We conducted a nationwide study in England to assess the risk of hospital admission for myocarditis or pericarditis after primary or booster and the risk after a confirmed SARS-CoV-2 infection in those with and without a prior confirmed SARS-CoV-2 infection.

          • Elevated risks of myocarditis were found up to 6 days after each of priming dose of the available mRNA vaccines (BNT162b2 and mRNA-1723) and after mRNA booster doses following a mRNA priming course but not after a priming course of the adenovirus-vectored vaccine ChAdOx1-S. The only elevated seen after the ChAdOx1-S vaccine was after the dose in 16 to 39 year olds.

          • For both mRNA vaccines, elevated risks were found in those under 40 years old, predominantly in males, were highest after the second priming dose and were generally lower in those vaccinated after a prior SARS-CoV-2 infection.

          • There was an elevated risk of myocarditis and pericarditis in the 27 days after a SARS-CoV-2 infection which was higher in ≥40 year olds than 16 to 39 year olds and was still present in those with a reinfection or who had been vaccinated before infection.

          What do these findings mean?
          • This study provides information for policy makers and those recommended to receive booster mRNA vaccines on the associated rare risk of myocarditis or pericarditis in a population with a high prevalence of prior SARS-CoV-2 infection.

          • The lower risk after a booster than primary course, and the lower risk in vaccinees with a prior SARS-CoV-2 infection, does not suggest an immune-mediated mechanism directed at the spike protein.

          • The greater risk associated with mRNA-1273 vaccines, which have a higher mRNA dose than BNT162b2 vaccines, and the substantially lower risk after the mRNA-booster which has half the mRNA content than used for priming, may be suggestive an mRNA dose-related mechanism but further work is required to determine this.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates

          Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and the resulting disease, coronavirus disease 2019 (Covid-19), have spread to millions of persons worldwide. Multiple vaccine candidates are under development, but no vaccine is currently available. Interim safety and immunogenicity data about the vaccine candidate BNT162b1 in younger adults have been reported previously from trials in Germany and the United States. Methods In an ongoing, placebo-controlled, observer-blinded, dose-escalation, phase 1 trial conducted in the United States, we randomly assigned healthy adults 18 to 55 years of age and those 65 to 85 years of age to receive either placebo or one of two lipid nanoparticle–formulated, nucleoside-modified RNA vaccine candidates: BNT162b1, which encodes a secreted trimerized SARS-CoV-2 receptor–binding domain; or BNT162b2, which encodes a membrane-anchored SARS-CoV-2 full-length spike, stabilized in the prefusion conformation. The primary outcome was safety (e.g., local and systemic reactions and adverse events); immunogenicity was a secondary outcome. Trial groups were defined according to vaccine candidate, age of the participants, and vaccine dose level (10 μg, 20 μg, 30 μg, and 100 μg). In all groups but one, participants received two doses, with a 21-day interval between doses; in one group (100 μg of BNT162b1), participants received one dose. Results A total of 195 participants underwent randomization. In each of 13 groups of 15 participants, 12 participants received vaccine and 3 received placebo. BNT162b2 was associated with a lower incidence and severity of systemic reactions than BNT162b1, particularly in older adults. In both younger and older adults, the two vaccine candidates elicited similar dose-dependent SARS-CoV-2–neutralizing geometric mean titers, which were similar to or higher than the geometric mean titer of a panel of SARS-CoV-2 convalescent serum samples. Conclusions The safety and immunogenicity data from this U.S. phase 1 trial of two vaccine candidates in younger and older adults, added to earlier interim safety and immunogenicity data regarding BNT162b1 in younger adults from trials in Germany and the United States, support the selection of BNT162b2 for advancement to a pivotal phase 2–3 safety and efficacy evaluation. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial

            Background Older adults (aged ≥70 years) are at increased risk of severe disease and death if they develop COVID-19 and are therefore a priority for immunisation should an efficacious vaccine be developed. Immunogenicity of vaccines is often worse in older adults as a result of immunosenescence. We have reported the immunogenicity of a novel chimpanzee adenovirus-vectored vaccine, ChAdOx1 nCoV-19, in young adults, and now describe the safety and immunogenicity of this vaccine in a wider range of participants, including adults aged 70 years and older. Methods In this report of the phase 2 component of a single-blind, randomised, controlled, phase 2/3 trial (COV002), healthy adults aged 18 years and older were enrolled at two UK clinical research facilities, in an age-escalation manner, into 18–55 years, 56–69 years, and 70 years and older immunogenicity subgroups. Participants were eligible if they did not have severe or uncontrolled medical comorbidities or a high frailty score (if aged ≥65 years). First, participants were recruited to a low-dose cohort, and within each age group, participants were randomly assigned to receive either intramuscular ChAdOx1 nCoV-19 (2·2 × 1010 virus particles) or a control vaccine, MenACWY, using block randomisation and stratified by age and dose group and study site, using the following ratios: in the 18–55 years group, 1:1 to either two doses of ChAdOx1 nCoV-19 or two doses of MenACWY; in the 56–69 years group, 3:1:3:1 to one dose of ChAdOx1 nCoV-19, one dose of MenACWY, two doses of ChAdOx1 nCoV-19, or two doses of MenACWY; and in the 70 years and older, 5:1:5:1 to one dose of ChAdOx1 nCoV-19, one dose of MenACWY, two doses of ChAdOx1 nCoV-19, or two doses of MenACWY. Prime-booster regimens were given 28 days apart. Participants were then recruited to the standard-dose cohort (3·5–6·5 × 1010 virus particles of ChAdOx1 nCoV-19) and the same randomisation procedures were followed, except the 18–55 years group was assigned in a 5:1 ratio to two doses of ChAdOx1 nCoV-19 or two doses of MenACWY. Participants and investigators, but not staff administering the vaccine, were masked to vaccine allocation. The specific objectives of this report were to assess the safety and humoral and cellular immunogenicity of a single-dose and two-dose schedule in adults older than 55 years. Humoral responses at baseline and after each vaccination until 1 year after the booster were assessed using an in-house standardised ELISA, a multiplex immunoassay, and a live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) microneutralisation assay (MNA80). Cellular responses were assessed using an ex-vivo IFN-γ enzyme-linked immunospot assay. The coprimary outcomes of the trial were efficacy, as measured by the number of cases of symptomatic, virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were by group allocation in participants who received the vaccine. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. This study is ongoing and is registered with ClinicalTrials.gov, NCT04400838, and ISRCTN, 15281137. Findings Between May 30 and Aug 8, 2020, 560 participants were enrolled: 160 aged 18–55 years (100 assigned to ChAdOx1 nCoV-19, 60 assigned to MenACWY), 160 aged 56–69 years (120 assigned to ChAdOx1 nCoV-19: 40 assigned to MenACWY), and 240 aged 70 years and older (200 assigned to ChAdOx1 nCoV-19: 40 assigned to MenACWY). Seven participants did not receive the boost dose of their assigned two-dose regimen, one participant received the incorrect vaccine, and three were excluded from immunogenicity analyses due to incorrectly labelled samples. 280 (50%) of 552 analysable participants were female. Local and systemic reactions were more common in participants given ChAdOx1 nCoV-19 than in those given the control vaccine, and similar in nature to those previously reported (injection-site pain, feeling feverish, muscle ache, headache), but were less common in older adults (aged ≥56 years) than younger adults. In those receiving two standard doses of ChAdOx1 nCoV-19, after the prime vaccination local reactions were reported in 43 (88%) of 49 participants in the 18–55 years group, 22 (73%) of 30 in the 56–69 years group, and 30 (61%) of 49 in the 70 years and older group, and systemic reactions in 42 (86%) participants in the 18–55 years group, 23 (77%) in the 56–69 years group, and 32 (65%) in the 70 years and older group. As of Oct 26, 2020, 13 serious adverse events occurred during the study period, none of which were considered to be related to either study vaccine. In participants who received two doses of vaccine, median anti-spike SARS-CoV-2 IgG responses 28 days after the boost dose were similar across the three age cohorts (standard-dose groups: 18–55 years, 20 713 arbitrary units [AU]/mL [IQR 13 898–33 550], n=39; 56–69 years, 16 170 AU/mL [10 233–40 353], n=26; and ≥70 years 17 561 AU/mL [9705–37 796], n=47; p=0·68). Neutralising antibody titres after a boost dose were similar across all age groups (median MNA80 at day 42 in the standard-dose groups: 18–55 years, 193 [IQR 113–238], n=39; 56–69 years, 144 [119–347], n=20; and ≥70 years, 161 [73–323], n=47; p=0·40). By 14 days after the boost dose, 208 (>99%) of 209 boosted participants had neutralising antibody responses. T-cell responses peaked at day 14 after a single standard dose of ChAdOx1 nCoV-19 (18–55 years: median 1187 spot-forming cells [SFCs] per million peripheral blood mononuclear cells [IQR 841–2428], n=24; 56–69 years: 797 SFCs [383–1817], n=29; and ≥70 years: 977 SFCs [458–1914], n=48). Interpretation ChAdOx1 nCoV-19 appears to be better tolerated in older adults than in younger adults and has similar immunogenicity across all age groups after a boost dose. Further assessment of the efficacy of this vaccine is warranted in all age groups and individuals with comorbidities. Funding UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midlands NIHR Clinical Research Network, and AstraZeneca.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting

              Background Preapproval trials showed that messenger RNA (mRNA)–based vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had a good safety profile, yet these trials were subject to size and patient-mix limitations. An evaluation of the safety of the BNT162b2 mRNA vaccine with respect to a broad range of potential adverse events is needed. Methods We used data from the largest health care organization in Israel to evaluate the safety of the BNT162b2 mRNA vaccine. For each potential adverse event, in a population of persons with no previous diagnosis of that event, we individually matched vaccinated persons to unvaccinated persons according to sociodemographic and clinical variables. Risk ratios and risk differences at 42 days after vaccination were derived with the use of the Kaplan–Meier estimator. To place these results in context, we performed a similar analysis involving SARS-CoV-2–infected persons matched to uninfected persons. The same adverse events were studied in the vaccination and SARS-CoV-2 infection analyses. Results In the vaccination analysis, the vaccinated and control groups each included a mean of 884,828 persons. Vaccination was most strongly associated with an elevated risk of myocarditis (risk ratio, 3.24; 95% confidence interval [CI], 1.55 to 12.44; risk difference, 2.7 events per 100,000 persons; 95% CI, 1.0 to 4.6), lymphadenopathy (risk ratio, 2.43; 95% CI, 2.05 to 2.78; risk difference, 78.4 events per 100,000 persons; 95% CI, 64.1 to 89.3), appendicitis (risk ratio, 1.40; 95% CI, 1.02 to 2.01; risk difference, 5.0 events per 100,000 persons; 95% CI, 0.3 to 9.9), and herpes zoster infection (risk ratio, 1.43; 95% CI, 1.20 to 1.73; risk difference, 15.8 events per 100,000 persons; 95% CI, 8.2 to 24.2). SARS-CoV-2 infection was associated with a substantially increased risk of myocarditis (risk ratio, 18.28; 95% CI, 3.95 to 25.12; risk difference, 11.0 events per 100,000 persons; 95% CI, 5.6 to 15.8) and of additional serious adverse events, including pericarditis, arrhythmia, deep-vein thrombosis, pulmonary embolism, myocardial infarction, intracranial hemorrhage, and thrombocytopenia. Conclusions In this study in a nationwide mass vaccination setting, the BNT162b2 vaccine was not associated with an elevated risk of most of the adverse events examined. The vaccine was associated with an excess risk of myocarditis (1 to 5 events per 100,000 persons). The risk of this potentially serious adverse event and of many other serious adverse events was substantially increased after SARS-CoV-2 infection. (Funded by the Ivan and Francesca Berkowitz Family Living Laboratory Collaboration at Harvard Medical School and Clalit Research Institute.)
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: MethodologyRole: Writing – review & editing
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: MethodologyRole: Writing – review & editing
                Journal
                PLoS Med
                PLoS Med
                plos
                PLOS Medicine
                Public Library of Science (San Francisco, CA USA )
                1549-1277
                1549-1676
                7 June 2023
                June 2023
                : 20
                : 6
                : e1004245
                Affiliations
                [1 ] UK Health Security Agency, London, United Kingdom
                [2 ] NIHR Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine, London, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0002-3999-6461
                https://orcid.org/0000-0002-1884-0097
                https://orcid.org/0000-0001-5833-1863
                Article
                PMEDICINE-D-22-03092
                10.1371/journal.pmed.1004245
                10286992
                37285378
                52d78144-1a6e-4b84-9f4e-527d4cb51c5f
                © 2023 Stowe et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 September 2022
                : 22 May 2023
                Page count
                Figures: 2, Tables: 4, Pages: 19
                Funding
                Funded by: UK Health Security Agency
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100018336, National Institute for Health Research Health Protection Research Unit;
                Award ID: Grant Reference NIHR200929
                Award Recipient :
                This work was supported by the UK Health Security Agency for authors NA, JS HJW via their employment. EM receives support from the National Institute for Health Research Health Protection Research Unit in Immunisation at the London School of Hygiene and Tropical Medicine in partnership with UKHSA (Grant Reference NIHR200929). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Infectious Disease Control
                Vaccines
                Booster Doses
                Medicine and Health Sciences
                Medical Conditions
                Cardiovascular Diseases
                Cardiovascular Disease Risk
                Medicine and Health Sciences
                Cardiology
                Cardiovascular Medicine
                Cardiovascular Diseases
                Cardiovascular Disease Risk
                Medicine and Health Sciences
                Cardiology
                Myocarditis
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and Life Sciences
                Immunology
                Vaccination and Immunization
                Medicine and Health Sciences
                Immunology
                Vaccination and Immunization
                Medicine and Health Sciences
                Public and Occupational Health
                Preventive Medicine
                Vaccination and Immunization
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Infectious Disease Control
                Vaccines
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Viral Diseases
                Covid 19
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Respiratory Infections
                Medicine and Health Sciences
                Medical Conditions
                Respiratory Disorders
                Respiratory Infections
                Medicine and Health Sciences
                Pulmonology
                Respiratory Disorders
                Respiratory Infections
                Custom metadata
                vor-update-to-uncorrected-proof
                2023-06-22
                The raw study data are protected and are not freely available due to data privacy laws. This work is carried out under Regulation 3 of The Health Service (Control of Patient Information) (Secretary of State for Health, 2002))(3) using patient identification information without individual patient consent. Data cannot be made publicly available for ethical and legal reasons, i.e. public availability would compromise patient confidentiality as data tables list single counts of individuals rather than aggregated data. Requests for the underlying data should be made via the UKHSA office for data release: https://www.gov.uk/government/publications/accessing-ukhsa-protected-data.
                COVID-19

                Medicine
                Medicine

                Comments

                Comment on this article