27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Enzyme Localization Can Drastically Affect Signal Amplification in Signal Transduction Pathways

      research-article
      , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Push–pull networks are ubiquitous in signal transduction pathways in both prokaryotic and eukaryotic cells. They allow cells to strongly amplify signals via the mechanism of zero-order ultrasensitivity. In a push–pull network, two antagonistic enzymes control the activity of a protein by covalent modification. These enzymes are often uniformly distributed in the cytoplasm. They can, however, also be colocalized in space; for instance, near the pole of the cell. Moreover, it is increasingly recognized that these enzymes can also be spatially separated, leading to gradients of the active form of the messenger protein. Here, we investigate the consequences of the spatial distributions of the enzymes for the amplification properties of push–pull networks. Our calculations reveal that enzyme localization by itself can have a dramatic effect on the gain. The gain is maximized when the two enzymes are either uniformly distributed or colocalized in one region in the cell. Depending on the diffusion constants, however, the sharpness of the response can be strongly reduced when the enzymes are spatially separated. We discuss how our predictions could be tested experimentally.

          Author Summary

          Living cells continually have to respond to a changing environment. To this end, they do not only have to detect environmental signals, but also to amplify them. In living cells, signals are often amplified in so-called push-pull networks. In a push–pull network, two enzymes control the activity of a protein in an antagonistic manner. A well-known example is a network in which a kinase phosphorylates a messenger protein, while a phosphatase dephosphorylates the same protein. While it has long been assumed that the enzymes are uniformly distributed in the cytoplasm, it is increasingly becoming clear that in many systems one or both of the enzymes are localized in space, for instance near the cell pole. If the enzymes are spatially separated, then spatial gradients of the messenger protein can form, and recently a number of these protein gradients have been observed experimentally. We study by numerical calculations how the amplification properties of push–pull networks depend upon the spatial distribution of the enzymes. We find that the gain is maximized when the enzymes are either uniformly distributed or colocalized in space. Depending upon the diffusion constants, however, the sharpness of the response can be strongly reduced when the enzymes are spatially separated.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter.

          Correct positioning of the division plane is a prerequisite for the generation of daughter cells with a normal chromosome complement. Here, we present a mechanism that coordinates assembly and placement of the FtsZ cytokinetic ring with bipolar localization of the newly duplicated chromosomal origins in Caulobacter. After replication of the polarly located origin region, one copy moves rapidly to the opposite end of the cell in an MreB-dependent manner. A previously uncharacterized essential protein, MipZ, forms a complex with the partitioning protein ParB near the origin of replication and localizes with the duplicated origin regions to the cell poles. MipZ directly interferes with FtsZ polymerization, thereby restricting FtsZ ring formation to midcell, the region of lowest MipZ concentration. The cellular localization of MipZ thus serves the dual function of positioning the FtsZ ring and delaying formation of the cell division apparatus until chromosome segregation has initiated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Receptor clustering as a cellular mechanism to control sensitivity.

            Chemotactic bacteria such as Escherichia coli can detect and respond to extremely low concentrations of attractants, concentrations of less than 5 nM in the case of aspartate. They also sense gradients of attractants extending over five orders of magnitude in concentration (up to 1 mM aspartate). Here we consider the possibility that this combination of sensitivity and range of response depends on the clustering of chemotactic receptors on the surface of the bacterium. We examine what will happen if ligand binding changes the activity of a receptor, propagating this change in activity to neighbouring receptors in a cluster. Calculations based on these assumptions show that sensitivity to extracellular ligands increases with the extent of spread of activity through an array of receptors, but that the range of concentrations over which the array works is severely diminished. However, a combination of low threshold of response and wide dynamic range can be attained if the cell has both clusters and single receptors on its surface, particularly if the extent of activity spread can adapt to external conditions. A mechanism of this kind can account quantitatively for the sensitivity and response range of E. coli to aspartate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An amplified sensitivity arising from covalent modification in biological systems.

              The transient and steady-state behavior of a reversible covalent modification system is examined. When the modifying enzymes operate outside the region of first-order kinetics, small percentage changes in the concentration of the effector controlling either of the modifying enzymes can give much larger percentage changes in the amount of modified protein. This amplification of the response to a stimulus can provide additional sensitivity in biological control, equivalent to that of allosteric proteins with high Hill coefficients.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                pcbi
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                October 2007
                12 October 2007
                24 August 2007
                : 3
                : 10
                : e195
                Affiliations
                [1]FOM Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands
                University of Illinois, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: tenwolde@ 123456amolf.nl
                Article
                06-PLCB-RA-0542R3 plcb-03-10-08
                10.1371/journal.pcbi.0030195
                2014792
                17937496
                52736137-b984-4640-a37d-6fc826d8d542
                Copyright: © 2007 van Albada and ten Wolde. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 December 2006
                : 24 August 2007
                Page count
                Pages: 10
                Categories
                Research Article
                Biophysics
                Computational Biology
                Eukaryotes
                Prokaryotes
                Custom metadata
                van Albada SB, ten Wolde PR (2007) Enzyme localization can drastically affect signal amplification in signal transduction pathways. PLoS Comput Biol 3(10): e195. doi: 10.1371/journal.pcbi.0030195

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article