10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparative transcriptome analysis reveals candidate genes involved in anthocyanin biosynthesis in sweetpotato (Ipomoea batatas L.).

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sweetpotato [Ipomoea batatas (L.) Lam] is an economically important crop for fresh and processed consumption and is widely cultivated worldwide, especially in China. Various sweetpotato cultivars with different storage root colors are presently available. The purple-fleshed sweetpotato obtains its color from anthocyanin accumulation in the storage roots, which is beneficial for both plant and human health. To date, the molecular mechanism of this anthocyanin accumulation has not been studied in detail. In our study, three cDNA libraries generated from 'Xuzi8' with dark-purple flesh, 'Xuzi6' with light-purple flesh, and 'Xu28' with white flesh were sequenced utilizing an Illumina HiSeq™ 2500 platform. Corresponding totals of 28,093,466, 29,239,729 and 27,217,440 raw reads were obtained from the three libraries and assembled into 137,625 unigenes with an average length of 481 bp. Moreover, 79,203 unigenes (57.55%) were found to be annotated in several public databases, and 1285 unigenes were differentially expressed among the Xu28 vs Xuzi8, Xu28 vs Xuzi6, and Xuzi6 vs Xuzi8 libraries. After functional category enrichment analysis of differential expression genes (DEGs), 25 genes were selected as the candidate genes related to anthocyanin accumulation. Furthermore, the expression patterns of some selected DEGs were verified by quantitative real-time PCR (qRT-PCR), and the correlation between expression levels of relevant genes involved in anthocyanin biosynthesis and anthocyanin content was determined. Taken together, the results compose a transcriptomic analysis to investigate the differences in purple flesh formation in the storage roots among different sweetpotato varieties, with the notable outcome that several key genes can now be closely linked to anthocyanin biosynthesis.

          Related collections

          Author and article information

          Journal
          Plant Physiol Biochem
          Plant physiology and biochemistry : PPB
          Elsevier BV
          1873-2690
          0981-9428
          Jan 2021
          : 158
          Affiliations
          [1 ] School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, China. Electronic address: instrong@163.com.
          [2 ] School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, China.
          [3 ] Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, China.
          Article
          S0981-9428(20)30586-6
          10.1016/j.plaphy.2020.11.035
          33272792
          52553153-8e7c-4188-a851-6e888b86c8fe
          Copyright © 2020 Elsevier Masson SAS. All rights reserved.
          History

          Transcriptome,Purple-fleshed sweetpotato,Differential expression genes,Anthocyanin

          Comments

          Comment on this article