55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      On the earliest evidence for habitual use of fire in Europe

      ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The timing of the human control of fire is a hotly debated issue, with claims for regular fire use by early hominins in Africa at ∼ 1.6 million y ago. These claims are not uncontested, but most archaeologists would agree that the colonization of areas outside Africa, especially of regions such as Europe where temperatures at time dropped below freezing, was indeed tied to the use of fire. Our review of the European evidence suggests that early hominins moved into northern latitudes without the habitual use of fire. It was only much later, from ∼ 300,000 to 400,000 y ago onward, that fire became a significant part of the hominin technological repertoire. It is also from the second half of the Middle Pleistocene onward that we can observe spectacular cases of Neandertal pyrotechnological knowledge in the production of hafting materials. The increase in the number of sites with good evidence of fire throughout the Late Pleistocene shows that European Neandertals had fire management not unlike that documented for Upper Paleolithic groups.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Fire as an engineering tool of early modern humans.

          The controlled use of fire was a breakthrough adaptation in human evolution. It first provided heat and light and later allowed the physical properties of materials to be manipulated for the production of ceramics and metals. The analysis of tools at multiple sites shows that the source stone materials were systematically manipulated with fire to improve their flaking properties. Heat treatment predominates among silcrete tools at approximately 72 thousand years ago (ka) and appears as early as 164 ka at Pinnacle Point, on the south coast of South Africa. Heat treatment demands a sophisticated knowledge of fire and an elevated cognitive ability and appears at roughly the same time as widespread evidence for symbolic behavior.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium).

            The nature and causes of the disappearance of Neanderthals and their apparent replacement by modern humans are subjects of considerable debate. Many researchers have proposed biologically or technologically mediated dietary differences between the two groups as one of the fundamental causes of Neanderthal disappearance. Some scenarios have focused on the apparent lack of plant foods in Neanderthal diets. Here we report direct evidence for Neanderthal consumption of a variety of plant foods, in the form of phytoliths and starch grains recovered from dental calculus of Neanderthal skeletons from Shanidar Cave, Iraq, and Spy Cave, Belgium. Some of the plants are typical of recent modern human diets, including date palms (Phoenix spp.), legumes, and grass seeds (Triticeae), whereas others are known to be edible but are not heavily used today. Many of the grass seed starches showed damage that is a distinctive marker of cooking. Our results indicate that in both warm eastern Mediterranean and cold northwestern European climates, and across their latitudinal range, Neanderthals made use of the diverse plant foods available in their local environment and transformed them into more easily digestible foodstuffs in part through cooking them, suggesting an overall sophistication in Neanderthal dietary regimes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early Pleistocene human occupation at the edge of the boreal zone in northwest Europe.

              The dispersal of early humans from Africa by 1.75 Myr ago led to a marked expansion of their range, from the island of Flores in the east to the Iberian peninsula in the west. This range encompassed tropical forest, savannah and Mediterranean habitats, but has hitherto not been demonstrated beyond 45 degrees N. Until recently, early colonization in Europe was thought to be confined to the area south of the Pyrenees and Alps. However, evidence from Pakefield (Suffolk, UK) at approximately 0.7 Myr indicated that humans occupied northern European latitudes when a Mediterranean-type climate prevailed. This provided the basis for an 'ebb and flow' model, where human populations were thought to survive in southern refugia during cold stages, only expanding northwards during fully temperate climates. Here we present new evidence from Happisburgh (Norfolk, UK) demonstrating that Early Pleistocene hominins were present in northern Europe >0.78 Myr ago when they were able to survive at the southern edge of the boreal zone. This has significant implications for our understanding of early human behaviour, adaptation and survival, as well as the tempo and mode of colonization after their first dispersal out of Africa.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 29 2011
                March 29 2011
                March 14 2011
                March 29 2011
                : 108
                : 13
                : 5209-5214
                Article
                10.1073/pnas.1018116108
                3069174
                21402905
                5241c6c4-d7a0-4571-9a8f-822505d6c52f
                © 2011
                History

                Comments

                Comment on this article