10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessing baloxavir susceptibility of influenza viruses circulating in the United States during the 2016/17 and 2017/18 seasons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The anti-influenza therapeutic baloxavir targets cap-dependent endonuclease activity of polymerase acidic (PA) protein. We monitored baloxavir susceptibility in the United States with next generation sequencing analysis supplemented by phenotypic one-cycle infection assay. Analysis of PA sequences of 6,891 influenza A and B viruses collected during 2016/17 and 2017/18 seasons showed amino acid substitutions: I38L (two A(H1N1)pdm09 viruses), E23G (two A(H1N1)pdm09 viruses) and I38M (one A(H3N2) virus); conferring 4–10-fold reduced susceptibility to baloxavir.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: not found
          • Article: not found

          Baloxavir: First Global Approval

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Susceptibility of Influenza Viruses to the Novel Cap-Dependent Endonuclease Inhibitor Baloxavir Marboxil

            The novel cap-dependent endonuclease inhibitor baloxavir marboxil was approved for the treatment of influenza A and B virus infections in February 2018 in Japan. Because of the need to monitor influenza viruses for reduced susceptibility to this drug, we used two cell-based screening systems – a conventional plaque reduction assay and a focus reduction assay – to evaluate the susceptibility of influenza viruses to baloxavir. First, we generated a reference virus possessing an I38T substitution in the polymerase acidic subunit (PA), which is known to be associated with reduced susceptibility to baloxavir, and demonstrated the validity of our systems using this reference virus. We then determined the susceptibility of a panel of neuraminidase (NA) inhibitor-resistant viruses and their sensitive counterparts to baloxavir. No significant differences in baloxavir susceptibilities were found between the NA inhibitor-resistant and -sensitive viruses. We also examined seasonal influenza viruses isolated during the 2017–2018 influenza season in Japan and found that no currently circulating A(H1N1)pdm09, A(H3N2), or B viruses had significantly reduced susceptibility to baloxavir and none of the viruses possessed an amino acid substitution at PA residue 38. Use of a combination of methods to analyze antiviral susceptibility and detect amino acid substitutions is valuable for monitoring the emergence of baloxavir-resistant viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Insights into the antigenic advancement of influenza A(H3N2) viruses, 2011–2018

              Influenza A(H3N2) viruses evade human immunity primarily by acquiring antigenic changes in the haemagglutinin (HA). HA receptor-binding features of contemporary A(H3N2) viruses hinder traditional antigenic characterization using haemagglutination inhibition and promote selection of HA mutants. Thus, alternative approaches are needed to reliably assess antigenic relatedness between circulating viruses and vaccines. We developed a high content imaging-based neutralization test (HINT) to reduce antigenic mischaracterization resulting from virus adaptation to cell culture. Ferret reference antisera were raised using clinical specimens containing viruses representing recent vaccine strains. Analysis of viruses circulating during 2011–2018 showed that gain of an N158-linked glycosylation in HA was a molecular determinant of antigenic distancing between A/Hong Kong/4801/2014-like (clade 3C.2a) and A/Texas/50/2012-like viruses (clade 3C.1), while multiple evolutionary HA F193S substitution were linked to antigenic distancing from A/Switzerland/97152963/2013-like (clade 3C.3a) and further antigenic distancing from A/Texas/50/2012-like viruses. Additionally, a few viruses carrying HA T135K and/or I192T showed reduced neutralization by A/Hong Kong/4801/2014-like antiserum. Notably, this technique elucidated the antigenic characteristics of clinical specimens, enabling direct characterization of viruses produced in vivo, and eliminating in vitro culture, which rapidly alters the genotype/phenotype. HINT is a valuable new antigenic analysis tool for vaccine strain selection.
                Bookmark

                Author and article information

                Journal
                Euro Surveill
                Euro Surveill
                ES
                Eurosurveillance
                European Centre for Disease Prevention and Control (ECDC)
                1025-496X
                1560-7917
                17 January 2019
                : 24
                : 3
                : 1800666
                Affiliations
                [1 ]Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, United States of America
                [2 ]Battelle Memorial Institute, Atlanta, United States of America
                [3 ]Illinois Department of Public Health, Springfield, United States of America
                Author notes

                Correspondence: Larisa V Gubareva ( lgubareva@ 123456cdc.gov )

                Author information
                http://orcid.org/0000-0002-3136-5550
                Article
                1800666 1800666
                10.2807/1560-7917.ES.2019.24.3.1800666
                6344838
                30670144
                52283143-7829-4102-a3ea-9fff35d4127f
                This article is copyright of the authors or their affiliated institutions, 2019.

                This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

                History
                : 12 December 2018
                : 16 January 2019
                Categories
                Rapid Communication

                cap-dependent endonuclease inhibitor,polymerase acidic protein,influenza surveillance,influenza,drug resistance,phenotypic testing,next generation sequencing

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content222

                Cited by46

                Most referenced authors231