25
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Clinical Interventions in Aging (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on prevention and treatment of diseases in people over 65 years of age. Sign up for email alerts here.

      36,334 Monthly downloads/views I 3.829 Impact Factor I 7.4 CiteScore I 1.83 Source Normalized Impact per Paper (SNIP) I 1.044 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of diabetes mellitus on anterior segment of the eye

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetes mellitus (DM) has been emerging as one of the most serious health problems worldwide. Ocular complications of DM are currently one of the major causes of blindness in developed countries, among which diabetic retinopathy is relatively well studied and understood. However, although ocular surface complications of DM are common, diabetic complications of anterior segment of the eye, such as, cornea, conjunctiva, and lacrimal glands, are often overlooked. DM is associated with progressive damage to corneal nerves and epithelial cells, which increases the risk of anterior segment disorders including dry eye disease, corneal erosion, persistent epithelial defects, and even sight-threatening corneal ulcer. In this review, the authors will discuss the association of DM with disorders of anterior segment of the eye. Studies indicating the value of corneal nerve assessment as a sensitive, noninvasive, and repeatable biomarker for diabetic neuropathy will also be introduced. In addition, treatment modalities of anterior segment disorders associated with DM is discussed. The studies introduced in this review suggest that early and periodic screening of the anterior segment of the eye, as well as the retina, is important for the optimal treatment of DM.

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Contribution of polyol pathway to diabetes-induced oxidative stress.

          Diabetes causes increased oxidative stress, which is thought to play an important role in the pathogenesis of various diabetic complications. However, the source of the hyperglycemia-induced oxidative stress is not clear. It was found that the polyol pathway is the major contributor to oxidative stress in the lenses and nerves of diabetic mice. The first enzyme in the pathway, aldose reductase (AR), reduces glucose to sorbitol, which is then converted to fructose by sorbitol dehydrogenase (SDH). Transgenic mice that overexpress AR specifically in their lenses showed a significant increase in oxidative stress when they became hyperglycemic, as indicated by a decrease in GSH and an increase in malondialdehyde in their lenses. Introducing an SDH-deficient mutation into these transgenic mice significantly normalized the GSH and malondialdehyde levels. These results indicate that both enzymes of the polyol pathway contributed to hyperglycemia-induced oxidative stress in the lens. In the wild-type mice, diabetes caused a significant decrease in GSH in their sciatic nerves, indicative of oxidative stress. In the AR null mutant mice, diabetes did not lead to any decrease in the nerve GSH level. These results indicate that similar to the situation in the lens, AR is also the major contributor to hyperglycemia-induced oxidative stress in the nerve. Although increased flux of glucose through the polyol pathway leads to diabetic lesions in both the lenses and nerve, the mechanisms may be different. AR-induced osmotic stress seems to be the cause of diabetic cataract, whereas AR-induced oxidative stress is probably the cause of neuronal dysfunction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Surrogate markers of small fiber damage in human diabetic neuropathy.

            Surrogate markers of diabetic neuropathy are being actively sought to facilitate the diagnosis, measure the progression, and assess the benefits of therapeutic intervention in patients with diabetic neuropathy. We have quantified small nerve fiber pathological changes using the technique of intraepidermal nerve fiber (IENF) assessment and the novel in vivo technique of corneal confocal microscopy (CCM). Fifty-four diabetic patients stratified for neuropathy, using neurological evaluation, neurophysiology, and quantitative sensory testing, and 15 control subjects were studied. They underwent a punch skin biopsy to quantify IENFs and CCM to quantify corneal nerve fibers. IENF density (IENFD), branch density, and branch length showed a progressive reduction with increasing severity of neuropathy, which was significant in patients with mild, moderate, and severe neuropathy. CCM also showed a progressive reduction in corneal nerve fiber density (CNFD) and branch density, but the latter was significantly reduced even in diabetic patients without neuropathy. Both IENFD and CNFD correlated significantly with cold detection and heat as pain thresholds. Intraepidermal and corneal nerve fiber lengths were reduced in patients with painful compared with painless diabetic neuropathy. Both IENF and CCM assessment accurately quantify small nerve fiber damage in diabetic patients. However, CCM quantifies small fiber damage rapidly and noninvasively and detects earlier stages of nerve damage compared with IENF pathology. This may make it an ideal technique to accurately diagnose and assess progression of human diabetic neuropathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Corneal Confocal Microscopy Detects Early Nerve Regeneration in Diabetic Neuropathy After Simultaneous Pancreas and Kidney Transplantation

              Diabetic neuropathy is associated with increased morbidity and mortality. To date, limited data in subjects with impaired glucose tolerance and diabetes demonstrate nerve fiber repair after intervention. This may reflect a lack of efficacy of the interventions but may also reflect difficulty of the tests currently deployed to adequately assess nerve fiber repair, particularly in short-term studies. Corneal confocal microscopy (CCM) represents a novel noninvasive means to quantify nerve fiber damage and repair. Fifteen type 1 diabetic patients undergoing simultaneous pancreas–kidney transplantation (SPK) underwent detailed assessment of neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy, corneal sensitivity, and CCM at baseline and at 6 and 12 months after successful SPK. At baseline, diabetic patients had a significant neuropathy compared with control subjects. After successful SPK there was no significant change in neurologic impairment, neurophysiology, QST, corneal sensitivity, and intraepidermal nerve fiber density (IENFD). However, CCM demonstrated significant improvements in corneal nerve fiber density, branch density, and length at 12 months. Normalization of glycemia after SPK shows no significant improvement in neuropathy assessed by the neurologic deficits, QST, electrophysiology, and IENFD. However, CCM shows a significant improvement in nerve morphology, providing a novel noninvasive means to establish early nerve repair that is missed by currently advocated assessment techniques.
                Bookmark

                Author and article information

                Journal
                Clin Interv Aging
                Clin Interv Aging
                Clinical Interventions in Aging
                Clinical Interventions in Aging
                Dove Medical Press
                1176-9092
                1178-1998
                2019
                27 December 2018
                : 14
                : 53-63
                Affiliations
                [1 ]Department of Ophthalmology, School of Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea, m.sangbeom.han@ 123456gmail.com
                [2 ]Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
                Author notes
                Correspondence: Sang Beom Han, Department of Ophthalmology, School of Medicine, Kangwon National University, Kangwon National University Hospital, 156 Baengnyeong-ro, Chuncheon, Kangwon 200-722, Korea, Tel +82 33 258 2296, Fax +82 33 258 9210, Email m.sangbeom.han@ 123456gmail.com
                Article
                cia-14-053
                10.2147/CIA.S190713
                6312050
                30643394
                521c4b59-dfe3-419f-9a7e-66b2086fc29b
                © 2019 Han et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Health & Social care
                anterior segment disease,corneal neuropathy,diabetes mellitus,dry eye disease,ocular surface disease,keratopathy

                Comments

                Comment on this article