11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A rapid and sensitive assay for determining human brain levels of farnesyl-(FPP) and geranylgeranylpyrophosphate (GGPP) and transferase activities using UHPLC-MS/MS.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The isoprenoids farnesyl-(FPP) and geranylgeranylpyrophosphate (FPP and GGPP) are two major lipid intermediates in the mevalonate pathway. They participate in post-translational modification of members of the superfamily of small guanosine triphosphatases (GTPases; Ras, Rab, Rac, etc.) via prenylation reactions. Due to the important role of these proteins in a number of cell processes, in particular cell growth, division, and differentiation, investigation of the involvement of isoprenoids in these processes is of great interest. In a previously published report, we described a fully validated assay for the quantitation of the two isoprenoids using a high-performance liquid chromatography (HPLC)-fluorescence detection (FLD) method. The current work expands on the previous method and enhances it greatly by using a much faster state-of-the-art ultrahigh-performance liquid chromatography (UHPLC) technique coupled to tandem mass spectrometry (MS/MS). The method exhibited a linear concentration range of 5-250 ng/mL for FPP and GGPP in human brain tissue; it was shown to be unaffected by ion suppression and provided results almost six times faster than the HPLC-FLD assay. Comparison of UHPLC-MS/MS and HPLC-FLD yielded excellent comparability of the two assays for both isoprenoids. Based on the UHPLC-MS/MS assay, a novel in vitro test system was implemented to study enzyme specificity for distinct amino acid CAAX motifs, which is potentially useful for investigating target interactions of new therapeutics for diseases involving pathological regulation of isoprenoids and/or small GTPases.

          Related collections

          Author and article information

          Journal
          Anal Bioanal Chem
          Analytical and bioanalytical chemistry
          Springer Nature America, Inc
          1618-2650
          1618-2642
          Oct 2010
          : 398
          : 4
          Affiliations
          [1 ] Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Max-von Laue-Str. 9, 60438 Frankfurt, Germany.
          Article
          10.1007/s00216-010-4088-7
          20730526
          52159721-09eb-41b9-a380-e59b4b0b196e
          History

          Comments

          Comment on this article