14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and ordering the latest scientific advances related to this subject. The main forms of memory presented include sensory memory, short-term memory, and long-term memory. Information from the world around us is first stored by sensory memory, thus enabling the storage and future use of such information. Short-term memory (or memory) refers to information processed in a short period of time. Long-term memory allows us to store information for long periods of time, including information that can be retrieved consciously (explicit memory) or unconsciously (implicit memory).

          Related collections

          Most cited references104

          • Record: found
          • Abstract: not found
          • Article: not found

          Cellular basis of working memory

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A cortical representation of the local visual environment.

            Medial temporal brain regions such as the hippocampal formation and parahippocampal cortex have been generally implicated in navigation and visual memory. However, the specific function of each of these regions is not yet clear. Here we present evidence that a particular area within human parahippocampal cortex is involved in a critical component of navigation: perceiving the local visual environment. This region, which we name the 'parahippocampal place area' (PPA), responds selectively and automatically in functional magnetic resonance imaging (fMRI) to passively viewed scenes, but only weakly to single objects and not at all to faces. The critical factor for this activation appears to be the presence in the stimulus of information about the layout of local space. The response in the PPA to scenes with spatial layout but no discrete objects (empty rooms) is as strong as the response to complex meaningful scenes containing multiple objects (the same rooms furnished) and over twice as strong as the response to arrays of multiple objects without three-dimensional spatial context (the furniture from these rooms on a blank background). This response is reduced if the surfaces in the scene are rearranged so that they no longer define a coherent space. We propose that the PPA represents places by encoding the geometry of the local environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Perceptual symbol systems.

              Prior to the twentieth century, theories of knowledge were inherently perceptual. Since then, developments in logic, statistics, and programming languages have inspired amodal theories that rest on principles fundamentally different from those underlying perception. In addition, perceptual approaches have become widely viewed as untenable because they are assumed to implement recording systems, not conceptual systems. A perceptual theory of knowledge is developed here in the context of current cognitive science and neuroscience. During perceptual experience, association areas in the brain capture bottom-up patterns of activation in sensory-motor areas. Later, in a top-down manner, association areas partially reactivate sensory-motor areas to implement perceptual symbols. The storage and reactivation of perceptual symbols operates at the level of perceptual components--not at the level of holistic perceptual experiences. Through the use of selective attention, schematic representations of perceptual components are extracted from experience and stored in memory (e.g., individual memories of green, purr, hot). As memories of the same component become organized around a common frame, they implement a simulator that produces limitless simulations of the component (e.g., simulations of purr). Not only do such simulators develop for aspects of sensory experience, they also develop for aspects of proprioception (e.g., lift, run) and introspection (e.g., compare, memory, happy, hungry). Once established, these simulators implement a basic conceptual system that represents types, supports categorization, and produces categorical inferences. These simulators further support productivity, propositions, and abstract concepts, thereby implementing a fully functional conceptual system. Productivity results from integrating simulators combinatorially and recursively to produce complex simulations. Propositions result from binding simulators to perceived individuals to represent type-token relations. Abstract concepts are grounded in complex simulations of combined physical and introspective events. Thus, a perceptual theory of knowledge can implement a fully functional conceptual system while avoiding problems associated with amodal symbol systems. Implications for cognition, neuroscience, evolution, development, and artificial intelligence are explored.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                30 June 2017
                2017
                : 8
                : 438
                Affiliations
                [1] 1Mind-Brain Group: Biology and Subjectivity in Philosophy and Contemporary Neuroscience, Institute for Culture and Society, University of Navarra Pamplona, Spain
                [2] 2Department of Learning and Curriculum, Faculty of Education and Psychology, University of Navarra Pamplona, Spain
                Author notes

                Edited by: Antonella Gasbarri, University of L’Aquila, Italy

                Reviewed by: Alfredo Meneses, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico; Carlos Alberto Blanco, Comillas Pontifical University, Spain; Elif Engin, McLean Hospital, United States; Francis Bambico, Centre for Addiction and Mental Health, Canada

                *Correspondence: Francisco Güell, fguell@ 123456unav.es

                This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2017.00438
                5491610
                28713278
                5205d23b-4d52-42e5-b8a9-3d9b34e66af2
                Copyright © 2017 Camina and Güell.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 February 2017
                : 19 June 2017
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 130, Pages: 16, Words: 0
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                explicit memory,sensory memory,implicit memory,long-term memory,short-term memory

                Comments

                Comment on this article