1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.

          Abstract

          Graphical abstract

          This is a visual representation of the abstract.

          Related collections

          Most cited references353

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage activation and polarization: nomenclature and experimental guidelines.

          Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation-with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Calcium signaling.

            Calcium ions (Ca(2+)) impact nearly every aspect of cellular life. This review examines the principles of Ca(2+) signaling, from changes in protein conformations driven by Ca(2+) to the mechanisms that control Ca(2+) levels in the cytoplasm and organelles. Also discussed is the highly localized nature of Ca(2+)-mediated signal transduction and its specific roles in excitability, exocytosis, motility, apoptosis, and transcription.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophages in Tissue Repair, Regeneration, and Fibrosis.

              Inflammatory monocytes and tissue-resident macrophages are key regulators of tissue repair, regeneration, and fibrosis. After tissue injury, monocytes and macrophages undergo marked phenotypic and functional changes to play critical roles during the initiation, maintenance, and resolution phases of tissue repair. Disturbances in macrophage function can lead to aberrant repair, such that uncontrolled production of inflammatory mediators and growth factors, deficient generation of anti-inflammatory macrophages, or failed communication between macrophages and epithelial cells, endothelial cells, fibroblasts, and stem or tissue progenitor cells all contribute to a state of persistent injury, and this could lead to the development of pathological fibrosis. In this review, we discuss the mechanisms that instruct macrophages to adopt pro-inflammatory, pro-wound-healing, pro-fibrotic, anti-inflammatory, anti-fibrotic, pro-resolving, and tissue-regenerating phenotypes after injury, and we highlight how some of these mechanisms and macrophage activation states could be exploited therapeutically.
                Bookmark

                Author and article information

                Journal
                Contact (Thousand Oaks)
                Contact (Thousand Oaks)
                CTC
                spctc
                Contact
                SAGE Publications (Sage CA: Los Angeles, CA )
                2515-2564
                9 December 2024
                Jan-Dec 2024
                : 7
                : 25152564241291374
                Affiliations
                [1 ]Department of Pharmacology and Chemical Biology, Ringgold 6614, universityUniversity of Pittsburgh School of Medicine; , Pittsburgh, Pennsylvania, USA
                [2 ]Vascular Medicine Institute, Ringgold 6614, universityUniversity of Pittsburgh School of Medicine; , Pittsburgh, Pennsylvania, USA
                [3 ]UPMC Hillman Cancer Center, Ringgold 6614, universityUniversity of Pittsburgh School of Medicine; , Pittsburgh, Pennsylvania, USA
                Author notes
                [*]Mohamed Trebak, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. Email: trebakm@ 123456pitt.edu
                Author information
                https://orcid.org/0000-0001-6759-864X
                Article
                10.1177_25152564241291374
                10.1177/25152564241291374
                11629433
                39659877
                5201c644-e6ec-4e01-9814-a75bc3654452
                © The Author(s) 2024

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 2 August 2024
                : 29 August 2024
                : 27 September 2024
                Funding
                Funded by: National Heart, Lung, and Blood Institute, FundRef https://doi.org/10.13039/100000050;
                Award ID: R35-HL150778
                Categories
                Novel Insights into Organelle Contact Sites and Their Implications in Pathology
                Review
                Custom metadata
                ts19
                January-December 2024

                calcium signaling,stromal-interaction molecule (stim),orai1,calcium release activated channel (crac) (icrac),fibrosis,tissue remodeling

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content222

                Most referenced authors4,333