Digital dentistry plays a pivotal role in dental health care. A critical step in many digital dental systems is to accurately delineate individual teeth and the gingiva in the 3-dimension intraoral scanned mesh data. However, previous state-of-the-art methods are either time-consuming or error prone, hence hindering their clinical applicability. This article presents an accurate, efficient, and fully automated deep learning model trained on a data set of 4,000 intraoral scanned data annotated by experienced human experts. On a holdout data set of 200 scans, our model achieves a per-face accuracy, average-area accuracy, and area under the receiver operating characteristic curve of 96.94%, 98.26%, and 0.9991, respectively, significantly outperforming the state-of-the-art baselines. In addition, our model takes only about 24 s to generate segmentation outputs, as opposed to >5 min by the baseline and 15 min by human experts. A clinical performance test of 500 patients with malocclusion and/or abnormal teeth shows that 96.9% of the segmentations are satisfactory for clinical applications, 2.9% automatically trigger alarms for human improvement, and only 0.2% of them need rework. Our research demonstrates the potential for deep learning to improve the efficacy and efficiency of dental treatment and digital dentistry.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.