47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Clonally Related Visual Cortical Neurons Show Similar Stimulus Feature Selectivity

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A fundamental feature of the mammalian neocortex is its columnar organization 1 . In the visual cortex, functional columns consisting of neurons with similar orientation preference have been characterized extensively 2- 4 , but how these columns are constructed during development remains unclear 5 . The ‘radial unit hypothesis’ 6 posits that the ontogenetic columns formed by clonally related neurons migrating along the same radial glial fiber during corticogenesis 7 provide the basis for functional columns in adult neocortex 1 . However, direct correspondence between the ontogenetic and functional columns has not been demonstrated 8 . Here we show that, despite the lack of discernible orientation map in mouse visual cortex 4, 9, 10 , sister neurons in the same radial clone exhibit similar orientation preference. Using a retroviral vector encoding green fluorescent protein (GFP) to label radial clones of excitatory neurons and in vivo two-photon calcium imaging to measure the neuronal response properties, we found that sister neurons preferred similar orientations, while nearby non-sisters showed no such relationship. Interestingly, disruption of gap junction coupling by viral expression of a dominant-negative mutant of Cx26 or by daily administration of a gap junction blocker carbenoxolone (CBX) during the first postnatal week greatly diminished the functional similarity between sister neurons, suggesting that the maturation of ontogenetic into functional columns requires intercellular communication through gap junctions. Together with the recent finding of preferential excitatory connections among sister neurons 11 , our results support the radial unit hypothesis and unify the ontogenetic and functional columns in the visual cortex.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Specification of cerebral cortical areas.

          P Rakic (1988)
          How the immense population of neurons that constitute the human cerebral neocortex is generated from progenitors lining the cerebral ventricle and then distributed to appropriate layers of distinctive cytoarchitectonic areas can be explained by the radial unit hypothesis. According to this hypothesis, the ependymal layer of the embryonic cerebral ventricle consists of proliferative units that provide a proto-map of prospective cytoarchitectonic areas. The output of the proliferative units is translated via glial guides to the expanding cortex in the form of ontogenetic columns, whose final number for each area can be modified through interaction with afferent input. Data obtained through various advanced neurobiological techniques, including electron microscopy, immunocytochemistry, [3H]thymidine and receptor autoradiography, retrovirus gene transfer, neural transplants, and surgical or genetic manipulation of cortical development, furnish new details about the kinetics of cell proliferation, their lineage relationships, and phenotypic expression that favor this hypothesis. The radial unit model provides a framework for understanding cerebral evolution, epigenetic regulation of the parcellation of cytoarchitectonic areas, and insight into the pathogenesis of certain cortical disorders in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurons derived from radial glial cells establish radial units in neocortex.

            The neocortex of the adult brain consists of neurons and glia that are generated by precursor cells of the embryonic ventricular zone. In general, glia are generated after neurons during development, but radial glia are an exception to this rule. Radial glia are generated before neurogenesis and guide neuronal migration. Radial glia are mitotically active throughout neurogenesis, and disappear or become astrocytes when neuronal migration is complete. Although the lineage relationships of cortical neurons and glia have been explored, the clonal relationship of radial glia to other cortical cells remains unknown. It has been suggested that radial glia may be neuronal precursors, but this has not been demonstrated in vivo. We have used a retroviral vector encoding enhanced green fluorescent protein to label precursor cells in vivo and have examined clones 1-3 days later using morphological, immunohistochemical and electrophysiological techniques. Here we show that clones consist of mitotic radial glia and postmitotic neurons, and that neurons migrate along clonally related radial glia. Time-lapse images show that proliferative radial glia generate neurons. Our results support the concept that a lineage relationship between neurons and proliferative radial glia may underlie the radial organization of neocortex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Highly selective receptive fields in mouse visual cortex.

              Genetic methods available in mice are likely to be powerful tools in dissecting cortical circuits. However, the visual cortex, in which sensory coding has been most thoroughly studied in other species, has essentially been neglected in mice perhaps because of their poor spatial acuity and the lack of columnar organization such as orientation maps. We have now applied quantitative methods to characterize visual receptive fields in mouse primary visual cortex V1 by making extracellular recordings with silicon electrode arrays in anesthetized mice. We used current source density analysis to determine laminar location and spike waveforms to discriminate putative excitatory and inhibitory units. We find that, although the spatial scale of mouse receptive fields is up to one or two orders of magnitude larger, neurons show selectivity for stimulus parameters such as orientation and spatial frequency that is near to that found in other species. Furthermore, typical response properties such as linear versus nonlinear spatial summation (i.e., simple and complex cells) and contrast-invariant tuning are also present in mouse V1 and correlate with laminar position and cell type. Interestingly, we find that putative inhibitory neurons generally have less selective, and nonlinear, responses. This quantitative description of receptive field properties should facilitate the use of mouse visual cortex as a system to address longstanding questions of visual neuroscience and cortical processing.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                11 April 2012
                02 May 2012
                07 December 2012
                : 486
                : 7401
                : 118-121
                Affiliations
                [1 ]Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
                [2 ]Howard Hughes Medical Institute, University of California, Berkeley, California 94720
                [3 ]Department of Neurobiology & Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794
                [4 ]Developmental Biology Program, Memorial Sloan-Kettering Cancer Centre, 1275 York Avenue, New York, NY 10065
                Author notes
                [+ ]To whom correspondence should be addressed. ydan@ 123456berkeley.edu
                [*]

                These authors contributed equally to this work

                Article
                HHMIMS368881
                10.1038/nature11110
                3375857
                22678292
                51f36600-86bb-43eb-95cb-260dfaad1997

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: Howard Hughes Medical Institute :
                Award ID: || HHMI_
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article