2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      13-Ethylberberine Induces Apoptosis through the Mitochondria-Related Apoptotic Pathway in Radiotherapy-Resistant Breast Cancer Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Berberine is reported to have multiple biological effects, including antimicrobial, anti-inflammatory, and antitumor activities, and 13-alkyl-substituted berberines show higher activity than berberine against certain bacterial species and human cancer cell lines. In particular, 13-ethylberberine (13-EBR) was reported to have anti-inflammatory effects in endotoxin-activated macrophage and septic mouse models. Thus, in this study, we aimed to examine the anticancer effects of 13-EBR and its mechanisms in radiotherapy-resistant (RT-R) MDA-MB-231 cells derived from the highly metastatic MDA-MB-231 cells. When we compared the gene expression between MDA-MB-231 and RT-R MDA-MB-231 cells with an RNA microarray, RT-R MDA-MB-231 showed higher levels of anti-apoptotic genes and lower levels of pro-apoptotic genes compared to MDA-MB-231 cells. Accordingly, we examined the effect of 13-EBR on the induction of apoptosis in RT-R MDA-MB-231 and MDA-MB-231 cells. The results showed that 13-EBR reduced the proliferation and colony-forming ability of both MDA-MB-231 and RT-R MDA-MB-231 cells. Moreover, 13-EBR induced apoptosis by promoting both intracellular and mitochondrial reactive oxygen species (ROS) and by regulating the apoptosis-related proteins involved in the intrinsic pathway, not in the extrinsic pathway. These results suggest that 13-EBR has pro-apoptotic effects in RT-R MDA-MB-231 and MDA-MB-231 cells by inducing mitochondrial ROS production and activating the mitochondrial apoptotic pathway, providing useful insights into new potential therapeutic strategies for RT-R breast cancer treatment.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress and apoptosis: impact on cancer therapy.

          It is well established that some chemotherapeutic agents and radiation therapy generate reactive oxygen species (ROS) in patients during cancer therapy. Free radicals, particularly ROS have been proposed as common mediators for apoptosis. Recent studies have demonstrated that the mode of cell death depends on the severity of the oxidative damage. This review will address some of the current paradigms of oxidative stress, and antioxidants on apoptosis, and discuss the potential mechanisms by which oxidants can regulate apoptotic pathways. It will also review new developments in eliminating cancer cells by selectively inducing apoptosis. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bcl-2-regulated apoptosis: mechanism and therapeutic potential.

            Apoptosis is essential for tissue homeostasis, particularly in the hematopoietic compartment, where its impairment can elicit neoplastic or autoimmune diseases. Whether stressed cells live or die is largely determined by interplay between opposing members of the Bcl-2 protein family. Bcl-2 and its closest homologs promote cell survival, but two other factions promote apoptosis. The BH3-only proteins sense and relay stress signals, but commitment to apoptosis requires Bax or Bak. The BH3-only proteins appear to activate Bax and Bak indirectly, by engaging and neutralizing their pro-survival relatives, which otherwise constrain Bax and Bak from permeabilizing mitochondria. The Bcl-2 family may also regulate autophagy and mitochondrial fission/fusion. Its pro-survival members are attractive therapeutic targets in cancer and perhaps autoimmunity and viral infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus.

              Methicillin-resistant Staphylococcus aureus (MRSA) bacteria have been responsible for substantial morbidity and mortality in hospitals because they usually have multidrug resistance. Some natural products are candidates as new antibiotic substances. In the present study, we investigated the antimicrobial activity of berberine, the main antibacterial substance of Coptidis rhizoma (Coptis chinensis Franch) and Phellodendri cortex (Phellodendron amurense Ruprecht), against clinical isolates of MRSA, and the effects of berberine on the adhesion to MRSA and intracellular invasion into human gingival fibroblasts (HGFs). Berberine showed antimicrobial activity against all tested strains of MRSA. Minimum inhibition concentrations (MICs) of berberine against MRSA ranged from 32 to 128 microg/mL. Ninety percent inhibition of MRSA was obtained with 64 microg/mL or less of berberine. In the checkerboard dilution test, berberine markedly lowered the MICs of ampicillin and oxacillin against MRSA. An additive effect was found between berberine and ampicillin, and a synergistic effect was found between berberine and oxacillin against MRSA. In the presence of 1-50 microg/mL berberine, MRSA adhesion and intracellular invasion were notably decreased compared with the vehicle-treated control group. These results suggest that berberine may have antimicrobial activity and the potential to restore the effectiveness of beta-lactam antibiotics against MRSA, and inhibit the MRSA adhesion and intracellular invasion in HGFs.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                04 July 2019
                July 2019
                : 24
                : 13
                : 2448
                Affiliations
                Department of Pharmacology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
                Author notes
                [* ]Correspondence: hyejungkim@ 123456gnu.ac.kr ; Tel.: +82-55-772-8074; Fax: +82-55-772-8079
                Author information
                https://orcid.org/0000-0002-6149-5284
                https://orcid.org/0000-0002-7067-6810
                Article
                molecules-24-02448
                10.3390/molecules24132448
                6651458
                31277363
                51c18e9d-34b1-4b96-a938-4a440ec37f2f
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 June 2019
                : 02 July 2019
                Categories
                Article

                apoptosis,13-ethylberberine,mitochondrial ros,rt-r breast cancer cells

                Comments

                Comment on this article