25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A spatially collocated sound thrusts a flash into awareness

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To interact effectively with the environment the brain integrates signals from multiple senses. It is currently unclear to what extent spatial information can be integrated across different senses in the absence of awareness. Combining dynamic continuous flash suppression (CFS) and spatial audiovisual stimulation, the current study investigated whether a sound facilitates a concurrent visual flash to elude flash suppression and enter perceptual awareness depending on audiovisual spatial congruency. Our results demonstrate that a concurrent sound boosts unaware visual signals into perceptual awareness. Critically, this process depended on the spatial congruency of the auditory and visual signals pointing towards low level mechanisms of audiovisual integration. Moreover, the concurrent sound biased the reported location of the flash as a function of flash visibility. The spatial bias of sounds on reported flash location was strongest for flashes that were judged invisible. Our results suggest that multisensory integration is a critical mechanism that enables signals to enter conscious perception.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Noise in the nervous system.

          Noise--random disturbances of signals--poses a fundamental problem for information processing and affects all aspects of nervous-system function. However, the nature, amount and impact of noise in the nervous system have only recently been addressed in a quantitative manner. Experimental and computational methods have shown that multiple noise sources contribute to cellular and behavioural trial-to-trial variability. We review the sources of noise in the nervous system, from the molecular to the behavioural level, and show how noise contributes to trial-to-trial variability. We highlight how noise affects neuronal networks and the principles the nervous system applies to counter detrimental effects of noise, and briefly discuss noise's potential benefits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ventriloquist effect results from near-optimal bimodal integration.

            Ventriloquism is the ancient art of making one's voice appear to come from elsewhere, an art exploited by the Greek and Roman oracles, and possibly earlier. We regularly experience the effect when watching television and movies, where the voices seem to emanate from the actors' lips rather than from the actual sound source. Originally, ventriloquism was explained by performers projecting sound to their puppets by special techniques, but more recently it is assumed that ventriloquism results from vision "capturing" sound. In this study we investigate spatial localization of audio-visual stimuli. When visual localization is good, vision does indeed dominate and capture sound. However, for severely blurred visual stimuli (that are poorly localized), the reverse holds: sound captures vision. For less blurred stimuli, neither sense dominates and perception follows the mean position. Precision of bimodal localization is usually better than either the visual or the auditory unimodal presentation. All the results are well explained not by one sense capturing the other, but by a simple model of optimal combination of visual and auditory information.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Attention, intention, and priority in the parietal lobe.

              For many years there has been a debate about the role of the parietal lobe in the generation of behavior. Does it generate movement plans (intention) or choose objects in the environment for further processing? To answer this, we focus on the lateral intraparietal area (LIP), an area that has been shown to play independent roles in target selection for saccades and the generation of visual attention. Based on results from a variety of tasks, we propose that LIP acts as a priority map in which objects are represented by activity proportional to their behavioral priority. We present evidence to show that the priority map combines bottom-up inputs like a rapid visual response with an array of top-down signals like a saccade plan. The spatial location representing the peak of the map is used by the oculomotor system to target saccades and by the visual system to guide visual attention.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Integr Neurosci
                Front Integr Neurosci
                Front. Integr. Neurosci.
                Frontiers in Integrative Neuroscience
                Frontiers Media S.A.
                1662-5145
                27 February 2015
                2015
                : 9
                : 16
                Affiliations
                [1] 1Computational Cognitive Neuroimaging Laboratory, Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham Birmingham, UK
                [2] 2Max Planck Institute for Biological Cybernetics Tübingen, Germany
                Author notes

                Edited by: Salvador Soto-Faraco, Universitat Pompeu Fabra, Spain

                Reviewed by: Elliot D. Freeman, City University, UK; Yi-Chuan Chen, Lancaster University, UK; Claudia Lunghi, Università degli Studi di Firenze, Italy

                *Correspondence: Uta Noppeney, Computational Cognitive Neuroimaging Laboratory, Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, B15 2TT Birmingham, UK e-mail: U.Noppeney@ 123456bham.ac.uk

                This article was submitted to the journal Frontiers in Integrative Neuroscience.

                Article
                10.3389/fnint.2015.00016
                4343005
                25774126
                51be7f35-befd-486b-a2e4-038a377e4528
                Copyright © 2015 Aller, Giani, Conrad, Watanabe and Noppeney.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 September 2014
                : 05 February 2015
                Page count
                Figures: 2, Tables: 0, Equations: 2, References: 74, Pages: 8, Words: 7017
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                multisensory integration,awareness,attention,consciousness,audiovisual,perception,ventriloquism,perceptual illusion

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content165

                Cited by12

                Most referenced authors386