Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Flexible photoelectrochemical biosensor for ultrasensitive microRNA detection based on concatenated multiplex signal amplification.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Precise microRNA (miRNA) analysis is significant importance for early disease diagnosis. Herein, a novel flexible photoelectrochemical (PEC) biosensor for miRNA determination was developed by employing CdS NPs-modified carbon cloth (CC) on polyimide (PI) film as photoelectric material to provide the PEC responses and an efficient four-stage reaction system as the target recognition and signal amplification unit to improve the analytical performance. In this PEC biosensor, the presence of target miR-21 would trigger the catalytic hairpin assembly (CHA) and the following hybridization chain reaction (HCR) to produce a long dsDNA labeled with numerous biotins, which would further capture a large amount of alkaline phosphatase (ALP) for catalyzing the generation of ascorbic acid (AA). As an efficient electron donor, AA could be oxidized by the photoelectrode, which would initiate a redox cycling amplification process to regenerate AA, resulting in the enhancement of the photocurrent response. Benefitting from the synergistic nucleic acid-based, enzyme catalytic, and chemical signal amplification strategies, the proposed biosensing strategy enabled ultrasensitive miRNA determination. As expected, the PEC biosensor performed satisfactory analytical performances with a linear range of 1 fM to 1 nM and the detection limit down to 0.41 fM. Furthermore, the PEC biosensing strategy exhibited recommendable selectivity, stability, flexibility, and practical applicability. Therefore, this sensing platform provides promising potential for application in bioassay and early diagnosis of disease.

          Related collections

          Author and article information

          Journal
          Biosens Bioelectron
          Biosensors & bioelectronics
          Elsevier BV
          1873-4235
          0956-5663
          Dec 15 2021
          : 194
          Affiliations
          [1 ] College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
          [2 ] College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China. Electronic address: xjliu@qau.edu.cn.
          [3 ] College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China. Electronic address: lifeng@qau.edu.cn.
          Article
          S0956-5663(21)00618-7
          10.1016/j.bios.2021.113581
          34461568
          51bbe534-bbf8-42f9-a429-b4adbbbce4b9
          History

          MicroRNA detection,Flexible photoelectrochemical biosensor,Redox cycling amplification,Synergistic signal amplification

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content171

          Cited by26