4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Causal association of gut microbiota and esophageal cancer: a Mendelian randomization study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Despite the growing body of evidence, the link between the gut microbiota and different types of tumors, such as colorectal, gastric, and liver cancer, is becoming more apparent. The gut microbiota can be used as a reference for evaluating various diseases, including cancer, and can also act as risk factors or preventive factors. However, the specific connection between the gut microbiota and the advancement of esophageal cancer has yet to be investigated. Therefore, the aim of this research is to clarify the possible causal influence of intestinal microorganisms on the vulnerability to esophageal cancer through the utilization of Mendelian randomization (MR) studies.

          Methods

          In this study, we employed a two-sample Mendelian randomization approach to evaluate the unbiased causal association between 150 different gut microbiota types and the occurrence of esophageal cancer. Following the selection from the IEU GWAS database and SNP filtration, we utilized various MR statistical techniques on the suitable instrumental variables. These included IVW methods, employing inverse variance weighting. Additionally, we performed a range of sensitivity analyses to confirm the heterogeneity and pleiotropy of the instrumental variables, thus ensuring the reliability of the outcomes.

          Results

          The increased likelihood of developing esophageal cancer is linked to the genetically predicted high levels of Gordonibacter, Oxalobacter, Coprobacter, Veillonella, Ruminiclostridium 5, Ruminococcus 1 , and Senegalimasilia genera. Conversely, a decreased risk of esophageal cancer is associated with the high abundance of Turicibacter, Eubacterium oxidoreducens group, Romboutsia, and Prevotella 9 genera. No heterogeneity and pleiotropy were detected in the sensitivity analysis.

          Discussion

          We found that 11 types of gut microbial communities are associated with esophageal cancer, thereby confirming that the gut microbiota plays a significant role in the path.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors

          Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis induce sustained clinical responses in a sizeable minority of cancer patients. Here, we show that primary resistance to ICI can be due to abnormal gut microbiome composition. Antibiotics (ATB) inhibited the clinical benefit of ICI in patients with advanced cancer. Fecal microbiota transplantation (FMT) from cancer patients who responded to ICI (but not from non-responding patients) into germ-free or ATB-treated mice ameliorated the antitumor effects of PD-1 blockade. Metagenomics of patient stools at diagnosis revealed correlations between clinical responses to ICI and the relative abundance of Akkermansia muciniphila. Oral supplementation with A. muciniphila post-FMT with non-responder feces restored the efficacy of PD-1 blockade in an IL-12-dependent manner, by increasing the recruitment of CCR9+CXCR3+CD4+ T lymphocytes into tumor beds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data

            Genome-wide association studies, which typically report regression coefficients summarizing the associations of many genetic variants with various traits, are potentially a powerful source of data for Mendelian randomization investigations. We demonstrate how such coefficients from multiple variants can be combined in a Mendelian randomization analysis to estimate the causal effect of a risk factor on an outcome. The bias and efficiency of estimates based on summarized data are compared to those based on individual-level data in simulation studies. We investigate the impact of gene–gene interactions, linkage disequilibrium, and ‘weak instruments’ on these estimates. Both an inverse-variance weighted average of variant-specific associations and a likelihood-based approach for summarized data give similar estimates and precision to the two-stage least squares method for individual-level data, even when there are gene–gene interactions. However, these summarized data methods overstate precision when variants are in linkage disequilibrium. If the P-value in a linear regression of the risk factor for each variant is less than , then weak instrument bias will be small. We use these methods to estimate the causal association of low-density lipoprotein cholesterol (LDL-C) on coronary artery disease using published data on five genetic variants. A 30% reduction in LDL-C is estimated to reduce coronary artery disease risk by 67% (95% CI: 54% to 76%). We conclude that Mendelian randomization investigations using summarized data from uncorrelated variants are similarly efficient to those using individual-level data, although the necessary assumptions cannot be so fully assessed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients

              Pre-clinical mouse models suggest that the gut microbiome modulates tumor response to checkpoint blockade immunotherapy; however, this has not been well-characterized in human cancer patients. Here we examined the oral and gut microbiome of melanoma patients undergoing anti-PD-1 immunotherapy (n=112). Significant differences were observed in the diversity and composition of the patient gut microbiome of responders (R) versus non-responders (NR). Analysis of patient fecal microbiome samples (n=43, 30R, 13NR) showed significantly higher alpha diversity (p<0.01) and relative abundance of Ruminococcaceae bacteria (p<0.01) in responding patients. Metagenomic studies revealed functional differences in gut bacteria in R including enrichment of anabolic pathways. Immune profiling suggested enhanced systemic and anti-tumor immunity in responding patients with a favorable gut microbiome, as well as in germ-free mice receiving fecal transplants from responding patients. Together, these data have important implications for the treatment of melanoma patients with immune checkpoint inhibitors.
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/2513503/overviewRole:
                URI : https://loop.frontiersin.org/people/2273306/overviewRole:
                Role:
                Role:
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                01 December 2023
                2023
                : 14
                : 1286598
                Affiliations
                [1] 1Department of Radiation Oncology, Qilu Hospital of Shandong University , Jinan, China
                [2] 2The Second Hospital, Cheeloo College of Medicine, Shandong University , Jinan, China
                Author notes

                Edited by: Jian Li, Tulane University, United States

                Reviewed by: Kilaza Samson Mwaikono, Dar es Salaam Institute of Technology, Tanzania; Georgia Damoraki, National and Kapodistrian University of Athens, Greece; Marcos Edgar Herkenhoff, University of São Paulo, Brazil

                *Correspondence: Bowen Liu, liubowenzhuai@ 123456163.com
                Article
                10.3389/fmicb.2023.1286598
                10722290
                38107856
                516af259-cbb1-43df-886f-e790c18786bd
                Copyright © 2023 Gao, Wang, Liu and Cheng.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 August 2023
                : 07 November 2023
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 47, Pages: 11, Words: 7586
                Funding
                The authors declare that the research received the following funding: National Natural Science Foundation of China (82172664 and 81972850); Shandong Provincial Natural Science Foundation (ZR2021LSW020); Special Fund for Taishan Scholar Project (ts20190973); Supported by the Fundamental Research Funds for the Central Universities (2022JC010); Central Guiding Local Science and Technology Development Fund Projects (YDZX2023026); BeiGene Foundation (6010121159).
                Categories
                Microbiology
                Original Research
                Custom metadata
                Microorganisms in Vertebrate Digestive Systems

                Microbiology & Virology
                causality,gut microbiota,mendelian randomization,esophageal cancer,snps
                Microbiology & Virology
                causality, gut microbiota, mendelian randomization, esophageal cancer, snps

                Comments

                Comment on this article