13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Scent detection dogs for the Asian longhorn beetle,Anoplophora glabripennis

      , ,
      EPPO Bulletin
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers.

          Lung and breast cancers are leading causes of cancer death worldwide. Prior exploratory work has shown that patterns of biochemical markers have been found in the exhaled breath of patients with lung and breast cancers that are distinguishable from those of controls. However, chemical analysis of exhaled breath has not shown suitability for individual clinical diagnosis. The authors used a food reward-based method of training 5 ordinary household dogs to distinguish, by scent alone, exhaled breath samples of 55 lung and 31 breast cancer patients from those of 83 healthy controls. A correct indication of cancer samples by the dogs was sitting/lying in front of the sample. A correct response to control samples was to ignore the sample. The authors first trained the dogs in a 3-phase sequential process with gradually increasing levels of challenge. Once trained, the dogs' ability to distinguish cancer patients from controls was then tested using breath samples from subjects not previously encountered by the dogs. The researchers blinded both dog handlers and experimental observers to the identity of breath samples. The diagnostic accuracy data reported were obtained solely from the dogs' sniffing, in double-blinded conditions, of these breath samples obtained from subjects not previously encountered by the dogs during the training period. Among lung cancer patients and controls, overall sensitivity of canine scent detection compared to biopsy-confirmed conventional diagnosis was 0.99 (95% confidence interval [CI], 0.99, 1.00) and overall specificity 0.99 (95% CI, 0.96, 1.00). Among breast cancer patients and controls, sensitivity was 0.88 (95% CI, 0.75, 1.00) and specificity 0.98 (95% CI, 0.90, 0.99). Sensitivity and specificity were remarkably similar across all 4 stages of both diseases. Training was efficient and cancer identification was accurate; in a matter of weeks, ordinary household dogs with only basic behavioral "puppy training" were trained to accurately distinguish breath samples of lung and breast cancer patients from those of controls. This pilot work using canine scent detection demonstrates the validity of using a biological system to examine exhaled breath in the diagnostic identification of lung and breast cancers. Future work should closely examine the chemistry of exhaled breath to identify which chemical compounds can most accurately identify the presence of cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon.

            Patient prognosis in lung cancer largely depends on early diagnosis. The exhaled breath of patients may represent the ideal specimen for future lung cancer screening. However, the clinical applicability of current diagnostic sensor technologies based on signal pattern analysis remains incalculable due to their inability to identify a clear target. To test the robustness of the presence of a so far unknown volatile organic compound in the breath of patients with lung cancer, sniffer dogs were applied. Exhalation samples of 220 volunteers (healthy individuals, confirmed lung cancer or chronic obstructive pulmonary disease (COPD)) were presented to sniffer dogs following a rigid scientific protocol. Patient history, drug administration and clinicopathological data were analysed to identify potential bias or confounders. Lung cancer was identified with an overall sensitivity of 71% and a specificity of 93%. Lung cancer detection was independent from COPD and the presence of tobacco smoke and food odours. Logistic regression identified two drugs as potential confounders. It must be assumed that a robust and specific volatile organic compound (or pattern) is present in the breath of patients with lung cancer. Additional research efforts are required to overcome the current technical limitations of electronic sensor technologies to engineer a clinically applicable screening tool.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Handler beliefs affect scent detection dog outcomes

              Our aim was to evaluate how human beliefs affect working dog outcomes in an applied environment. We asked whether beliefs of scent detection dog handlers affect team performance and evaluated relative importance of human versus dog influences on handlers’ beliefs. Eighteen drug and/or explosive detection dog/handler teams each completed two sets of four brief search scenarios (conditions). Handlers were falsely told that two conditions contained a paper marking scent location (human influence). Two conditions contained decoy scents (food/toy) to encourage dog interest in a false location (dog influence). Conditions were (1) control; (2) paper marker; (3) decoy scent; and (4) paper marker at decoy scent. No conditions contained drug or explosive scent; any alerting response was incorrect. A repeated measures analysis of variance was used with search condition as the independent variable and number of alerts as the dependent variable. Additional nonparametric tests compared human and dog influence. There were 225 incorrect responses, with no differences in mean responses across conditions. Response patterns differed by condition. There were more correct (no alert responses) searches in conditions without markers. Within marked conditions, handlers reported that dogs alerted more at marked locations than other locations. Handlers’ beliefs that scent was present potentiated handler identification of detection dog alerts. Human more than dog influences affected alert locations. This confirms that handler beliefs affect outcomes of scent detection dog deployments.
                Bookmark

                Author and article information

                Journal
                EPPO Bulletin
                EPPO Bull
                Wiley-Blackwell
                02508052
                April 2016
                April 08 2016
                : 46
                : 1
                : 148-155
                Article
                10.1111/epp.12282
                514e640f-6df6-4ae5-8250-05bc03bf032e
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article