7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ATP binding controls distinct structural transitions of Escherichia coli DNA gyrase in complex with DNA

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA gyrase is a molecular motor that harnesses the free energy of ATP hydrolysis to introduce negative supercoils into DNA. A critical step in this reaction is the formation of a chiral DNA wrap on a similar scale to the nucleosome. Here we observe gyrase structural dynamics using a single-molecule assay in which gyrase drives the processive, stepwise rotation of a nanosphere attached to the side of a stretched DNA molecule. Analysis of rotational pauses and measurements of DNA contraction reveal multiple ATP-modulated structural transitions. DNA wrapping is coordinated with the ATPase cycle and proceeds via an unanticipated structural intermediate that dominates the kinetics of supercoiling. Our findings reveal a conformational landscape of loosely coupled transitions funneling the motor toward productive energy transduction, a feature that may be common to the reaction cycles of other DNA and protein remodeling machines.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.

          Recent advances in far-field fluorescence microscopy have led to substantial improvements in image resolution, achieving a near-molecular resolution of 20 to 30 nanometers in the two lateral dimensions. Three-dimensional (3D) nanoscale-resolution imaging, however, remains a challenge. We demonstrated 3D stochastic optical reconstruction microscopy (STORM) by using optical astigmatism to determine both axial and lateral positions of individual fluorophores with nanometer accuracy. Iterative, stochastic activation of photoswitchable probes enables high-precision 3D localization of each probe, and thus the construction of a 3D image, without scanning the sample. Using this approach, we achieved an image resolution of 20 to 30 nanometers in the lateral dimensions and 50 to 60 nanometers in the axial dimension. This development allowed us to resolve the 3D morphology of nanoscopic cellular structures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA topoisomerases.

            J. Wang (1996)
            The various problems of disentangling DNA strands or duplexes in a cell are all rooted in the double-helical structure of DNA. Three distinct subfamilies of enzymes, known as the DNA topoisomerases, have evolved to solve these problems. This review focuses on work in the past decade on the mechanisms and cellular functions of these enzymes. Newly discovered members and recent biochemical and structural results are reviewed, and mechanistic implications of these results are summarized. The primary cellular functions of these enzymes, including their roles in replication, transcription, chromosome condensation, and the maintenance of genome stability, are then discussed. The review ends with a summary of the regulation of the cellular levels of these enzymes and a discussion of their association with other cellular proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Type IIA topoisomerase inhibition by a new class of antibacterial agents.

              Despite the success of genomics in identifying new essential bacterial genes, there is a lack of sustainable leads in antibacterial drug discovery to address increasing multidrug resistance. Type IIA topoisomerases cleave and religate DNA to regulate DNA topology and are a major class of antibacterial and anticancer drug targets, yet there is no well developed structural basis for understanding drug action. Here we report the 2.1 A crystal structure of a potent, new class, broad-spectrum antibacterial agent in complex with Staphylococcus aureus DNA gyrase and DNA, showing a new mode of inhibition that circumvents fluoroquinolone resistance in this clinically important drug target. The inhibitor 'bridges' the DNA and a transient non-catalytic pocket on the two-fold axis at the GyrA dimer interface, and is close to the active sites and fluoroquinolone binding sites. In the inhibitor complex the active site seems poised to cleave the DNA, with a single metal ion observed between the TOPRIM (topoisomerase/primase) domain and the scissile phosphate. This work provides new insights into the mechanism of topoisomerase action and a platform for structure-based drug design of a new class of antibacterial agents against a clinically proven, but conformationally flexible, enzyme class.
                Bookmark

                Author and article information

                Journal
                101186374
                31761
                Nat Struct Mol Biol
                Nat. Struct. Mol. Biol.
                Nature structural & molecular biology
                1545-9993
                1545-9985
                6 October 2017
                08 April 2012
                08 April 2012
                29 October 2017
                : 19
                : 5
                : 538-S1
                Affiliations
                [1 ]Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
                [2 ]Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
                [3 ]Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA
                [4 ]Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
                Author notes
                Correspondence should be addressed to Z.B. ( zevry@ 123456stanford.edu )
                Article
                NIHMS362583
                10.1038/nsmb.2278
                5660678
                22484318
                514b336c-efeb-4c75-b48f-5b02125b7de6

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article