22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diffuse midline glioma, H3K27-altered, of the conus medullaris presenting as acute urinary retention: illustrative case

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND

          Diffuse midline glioma (DMG), H3K27-altered, is a rare, highly malignant central nervous system neoplasm that arises in midline structures. They are more commonly encountered in children and are rarely encountered in adults, usually in the thalamus or spinal cord. The presence of the H3K27 mutation in the H3F3A gene automatically classifies a tumor as World Health Organization grade IV. These tumors carry a grim prognosis, with an overall median survival of less than 1 year.

          OBSERVATIONS

          The authors report the case of a 38-year-old male presenting with acute-onset urinary retention who was found to have an expansile, well-circumscribed mass involving the conus medullaris at the level of T12–L1. A T12–L1 laminectomy and tumor debulking were performed. Pathology revealed glial cells with astrocytic morphology among Rosenthal fibers, microvascular proliferation, and cellular atypia. The H3K27 mutation was confirmed.

          LESSONS

          DMG, H3K27-altered, is a rarely encountered entity that can present in numerous midline structures. If localized to the conus medullaris, it may present as acute-onset urinary retention in a previously asymptomatic patient. Further investigation is needed to characterize its molecular and clinical features in adults to improve the management of those presenting with these tumors.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found

          The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.

          The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor. For the first time, the WHO classification of CNS tumors uses molecular parameters in addition to histology to define many tumor entities, thus formulating a concept for how CNS tumor diagnoses should be structured in the molecular era. As such, the 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas and other embryonal tumors, and incorporates new entities that are defined by both histology and molecular features, including glioblastoma, IDH-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M-mutant; RELA fusion-positive ependymoma; medulloblastoma, WNT-activated and medulloblastoma, SHH-activated; and embryonal tumour with multilayered rosettes, C19MC-altered. The 2016 edition has added newly recognized neoplasms, and has deleted some entities, variants and patterns that no longer have diagnostic and/or biological relevance. Other notable changes include the addition of brain invasion as a criterion for atypical meningioma and the introduction of a soft tissue-type grading system for the now combined entity of solitary fibrous tumor / hemangiopericytoma-a departure from the manner by which other CNS tumors are graded. Overall, it is hoped that the 2016 CNS WHO will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 2021 WHO Classification of Tumors of the Central Nervous System: a summary

            The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, is the sixth version of the international standard for the classification of brain and spinal cord tumors. Building on the 2016 updated fourth edition and the work of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy, the 2021 fifth edition introduces major changes that advance the role of molecular diagnostics in CNS tumor classification. At the same time, it remains wedded to other established approaches to tumor diagnosis such as histology and immunohistochemistry. In doing so, the fifth edition establishes some different approaches to both CNS tumor nomenclature and grading and it emphasizes the importance of integrated diagnoses and layered reports. New tumor types and subtypes are introduced, some based on novel diagnostic technologies such as DNA methylome profiling. The present review summarizes the major general changes in the 2021 fifth edition classification and the specific changes in each taxonomic category. It is hoped that this summary provides an overview to facilitate more in-depth exploration of the entire fifth edition of the WHO Classification of Tumors of the Central Nervous System.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma

              Summary We collated data from 157 unpublished cases of pediatric high-grade glioma and diffuse intrinsic pontine glioma and 20 publicly available datasets in an integrated analysis of >1,000 cases. We identified co-segregating mutations in histone-mutant subgroups including loss of FBXW7 in H3.3G34R/V, TOP3A rearrangements in H3.3K27M, and BCOR mutations in H3.1K27M. Histone wild-type subgroups are refined by the presence of key oncogenic events or methylation profiles more closely resembling lower-grade tumors. Genomic aberrations increase with age, highlighting the infant population as biologically and clinically distinct. Uncommon pathway dysregulation is seen in small subsets of tumors, further defining the molecular diversity of the disease, opening up avenues for biological study and providing a basis for functionally defined future treatment stratification.
                Bookmark

                Author and article information

                Journal
                J Neurosurg Case Lessons
                J Neurosurg Case Lessons
                J Neurosurg Case Lessons
                Journal of Neurosurgery: Case Lessons
                American Association of Neurological Surgeons
                2694-1902
                17 April 2023
                17 April 2023
                : 5
                : 16
                : CASE22529
                Affiliations
                [1 ]Departments of Neurosurgery and
                [2 ]Pathology, Stony Brook University School of Medicine, Stony Brook, New York
                Author notes
                Correspondence Sabir Saluja: Stony Brook University School of Medicine, Stony Brook, NY. sabir.saluja@ 123456stonybrookmedicine.edu .

                INCLUDE WHEN CITING Published April 17, 2023; DOI: 10.3171/CASE22529.

                Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

                Article
                CASE22529
                10.3171/CASE22529
                10550640
                37070683
                5136f4b1-7f83-41e7-a15f-25fd95e046b6
                © 2023 The authors

                CC BY-NC-ND 4.0 ( http://creativecommons.org/licenses/by-nc-nd/4.0/)

                History
                : 1 December 2022
                : 14 March 2023
                Page count
                Figures: 2, Tables: 0, References: 15, Pages: 4
                Categories
                Spine, Spine
                Lumbar, Lumbar
                Tumor, Tumor
                Case Lesson

                h3k27,diffuse midline glioma,conus medullaris,spinal cord tumor,adc = apparent diffusion coefficient,cns = central nervous system,dmg = diffuse midline glioma,dwi = diffusion-weighted imaging,emg = electromyography,mep = motor-evoked potential,who = world health organization

                Comments

                Comment on this article