59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serotonin, genetic variability, behaviour, and psychiatric disorders - a review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brain monoamines, and serotonin in particular, have repeatedly been shown to be linked to different psychiatric conditions such as depression, anxiety, antisocial behaviour, and dependence. Many studies have implicated genetic variability in the genes encoding monoamine oxidase A (MAOA) and the serotonin transporter (5HTT) in modulating susceptibility to these conditions. Paradoxically, the risk variants of these genes have been shown, in vitro, to increase levels of serotonin, although many of the conditions are associated with decreased levels of serotonin. Furthermore, in adult humans, and monkeys with orthologous genetic polymorphisms, there is no observable correlation between these functional genetic variants and the amount or activity of the corresponding proteins in the brain. These seemingly contradictory data might be explained if the association between serotonin and these behavioural and psychiatric conditions were mainly a consequence of events taking place during foetal and neonatal brain development. In this review we explore, based on recent research, the hypothesis that the dual role of serotonin as a neurotransmitter and a neurotrophic factor has a significant impact on behaviour and risk for neuropsychiatric disorders through altered development of limbic neurocircuitry involved in emotional processing, and development of the serotonergic neurons, during early brain development.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Epigenetic programming by maternal behavior.

          Here we report that increased pup licking and grooming (LG) and arched-back nursing (ABN) by rat mothers altered the offspring epigenome at a glucocorticoid receptor (GR) gene promoter in the hippocampus. Offspring of mothers that showed high levels of LG and ABN were found to have differences in DNA methylation, as compared to offspring of 'low-LG-ABN' mothers. These differences emerged over the first week of life, were reversed with cross-fostering, persisted into adulthood and were associated with altered histone acetylation and transcription factor (NGFI-A) binding to the GR promoter. Central infusion of a histone deacetylase inhibitor removed the group differences in histone acetylation, DNA methylation, NGFI-A binding, GR expression and hypothalamic-pituitary-adrenal (HPA) responses to stress, suggesting a causal relation among epigenomic state, GR expression and the maternal effect on stress responses in the offspring. Thus we show that an epigenomic state of a gene can be established through behavioral programming, and it is potentially reversible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Serotonin transporter genetic variation and the response of the human amygdala.

            A functional polymorphism in the promoter region of the human serotonin transporter gene (SLC6A4) has been associated with several dimensions of neuroticism and psychopathology, especially anxiety traits, but the predictive value of this genotype against these complex behaviors has been inconsistent. Serotonin [5- hydroxytryptamine, (5-HT)] function influences normal fear as well as pathological anxiety, behaviors critically dependent on the amygdala in animal models and in clinical studies. We now report that individuals with one or two copies of the short allele of the serotonin transporter (5-HTT) promoter polymorphism, which has been associated with reduced 5-HTT expression and function and increased fear and anxiety-related behaviors, exhibit greater amygdala neuronal activity, as assessed by BOLD functional magnetic resonance imaging, in response to fearful stimuli compared with individuals homozygous for the long allele. These results demonstrate genetically driven variation in the response of brain regions underlying human emotional behavior and suggest that differential excitability of the amygdala to emotional stimuli may contribute to the increased fear and anxiety typically associated with the short SLC6A4 allele.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region.

              Transporter-facilitated uptake of serotonin (5-hydroxytryptamine or 5-HT) has been implicated in anxiety in humans and animal models and is the site of action of widely used uptake-inhibiting antidepressant and antianxiety drugs. Human 5-HT transporter (5-HTT) gene transcription is modulated by a common polymorphism in its upstream regulatory region. The short variant of the polymorphism reduces the transcriptional efficiency of the 5-HTT gene promoter, resulting in decreased 5-HTT expression and 5-HT uptake in lymphoblasts. Association studies in two independent samples totaling 505 individuals revealed that the 5-HTT polymorphism accounts for 3 to 4 percent of total variation and 7 to 9 percent of inherited variance in anxiety-related personality traits in individuals as well as sibships.
                Bookmark

                Author and article information

                Journal
                Ups J Med Sci
                UPS
                Upsala Journal of Medical Sciences
                Informa Healthcare
                0300-9734
                2000-1967
                March 2010
                10 March 2010
                : 115
                : 1
                : 2-10
                Affiliations
                simpleDepartment of Neuroscience, Section of Pharmacology, Uppsala University, Uppsala Sweden
                Author notes
                Correspondence: Niklas Nordquist PhD, Department of Neuroscience, PO Box 593, Biomedical Center, 751 24 Uppsala, Sweden. E-mail: niklas.nordquist@ 123456neuro.uu.se
                Article
                UPS_A_457820_O
                10.3109/03009730903573246
                2853349
                20187845
                512b4e6a-b93f-4fbc-b3b5-3d5b79d9c058
                © Upsala Medical Society

                This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the source is credited.

                History
                : 08 October 2009
                : 18 December 2009
                Categories
                Review Article

                Medicine
                sexual dichotomy,development,slc6a4,maoa,limbic system,serotonin,behaviour,psychiatric disorder,genetic polymorphism

                Comments

                Comment on this article