332
views
0
recommends
+1 Recommend
0 collections
    17
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Functional interaction between neurons and glia is an exciting field that has expanded tremendously during the past decade. Such partnership has multiple impacts on neuronal activity and survival. Indeed, numerous findings indicate that glial cells interact tightly with neurons in physiological as well as pathological situations. One typical feature of glial cells is their high expression level of gap junction protein subunits, named connexins (Cxs), thus the membrane channels they form may contribute to neuroglial interaction that impacts neuronal activity and survival. While the participation of gap junction channels in neuroglial interactions has been regularly reviewed in the past, the other channel function of Cxs, i.e., hemichannels located at the cell surface, has only recently received attention. Gap junction channels provide the basis for a unique direct cell-to-cell communication, whereas Cx hemichannels allow the exchange of ions and signaling molecules between the cytoplasm and the extracellular medium, thus supporting autocrine and paracrine communication through a process referred to as “gliotransmission,” as well as uptake and release of metabolites. More recently, another family of proteins, termed pannexins (Panxs), has been identified. These proteins share similar membrane topology but no sequence homology with Cxs. They form multimeric membrane channels with pharmacology somewhat overlapping with that of Cx hemichannels. Such duality has led to several controversies in the literature concerning the identification of the molecular channel constituents (Cxs versus Panxs) in glia. In the present review, we update and discuss the knowledge of Cx hemichannels and Panx channels in glia, their properties and pharmacology, as well as the understanding of their contribution to neuroglial interactions in brain health and disease.

          Related collections

          Most cited references179

          • Record: found
          • Abstract: found
          • Article: not found

          Astrocyte control of synaptic transmission and neurovascular coupling.

          From a structural perspective, the predominant glial cell of the central nervous system, the astrocyte, is positioned to regulate synaptic transmission and neurovascular coupling: the processes of one astrocyte contact tens of thousands of synapses, while other processes of the same cell form endfeet on capillaries and arterioles. The application of subcellular imaging of Ca2+ signaling to astrocytes now provides functional data to support this structural notion. Astrocytes express receptors for many neurotransmitters, and their activation leads to oscillations in internal Ca2+. These oscillations induce the accumulation of arachidonic acid and the release of the chemical transmitters glutamate, d-serine, and ATP. Ca2+ oscillations in astrocytic endfeet can control cerebral microcirculation through the arachidonic acid metabolites prostaglandin E2 and epoxyeicosatrienoic acids that induce arteriole dilation, and 20-HETE that induces arteriole constriction. In addition to actions on the vasculature, the release of chemical transmitters from astrocytes regulates neuronal function. Astrocyte-derived glutamate, which preferentially acts on extrasynaptic receptors, can promote neuronal synchrony, enhance neuronal excitability, and modulate synaptic transmission. Astrocyte-derived d-serine, by acting on the glycine-binding site of the N-methyl-d-aspartate receptor, can modulate synaptic plasticity. Astrocyte-derived ATP, which is hydrolyzed to adenosine in the extracellular space, has inhibitory actions and mediates synaptic cross-talk underlying heterosynaptic depression. Now that we appreciate this range of actions of astrocytic signaling, some of the immediate challenges are to determine how the astrocyte regulates neuronal integration and how both excitatory (glutamate) and inhibitory signals (adenosine) provided by the same glial cell act in concert to regulate neuronal function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice.

            Although senile plaques focally disrupt neuronal health, the functional response of astrocytes to Alzheimer's disease pathology is unknown. Using multiphoton fluorescence lifetime imaging microscopy in vivo, we quantitatively imaged astrocytic calcium homeostasis in a mouse model of Alzheimer's disease. Resting calcium was globally elevated in the astrocytic network, but was independent of proximity to individual plaques. Time-lapse imaging revealed that calcium transients in astrocytes were more frequent, synchronously coordinated across long distances, and uncoupled from neuronal activity. Furthermore, rare intercellular calcium waves were observed, but only in mice with amyloid-beta plaques, originating near plaques and spreading radially at least 200 micrometers. Thus, although neurotoxicity is observed near amyloid-beta deposits, there exists a more general astrocyte-based network response to focal pathology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sweet sixteen for ANLS.

              Since its introduction 16 years ago, the astrocyte-neuron lactate shuttle (ANLS) model has profoundly modified our understanding of neuroenergetics by bringing a cellular and molecular resolution. Praised or disputed, the concept has never ceased to attract attention, leading to critical advances and unexpected insights. Here, we summarize recent experimental evidence further supporting the main tenets of the model. Thus, evidence for distinct metabolic phenotypes between neurons (mainly oxidative) and astrocytes (mainly glycolytic) have been provided by genomics and classical metabolic approaches. Moreover, it has become clear that astrocytes act as a syncytium to distribute energy substrates such as lactate to active neurones. Glycogen, the main energy reserve located in astrocytes, is used as a lactate source to sustain glutamatergic neurotransmission and synaptic plasticity. Lactate is also emerging as a neuroprotective agent as well as a key signal to regulate blood flow. Characterization of monocarboxylate transporter regulation indicates a possible involvement in synaptic plasticity and memory. Finally, several modeling studies captured the implications of such findings for many brain functions. The ANLS model now represents a useful, experimentally based framework to better understand the coupling between neuronal activity and energetics as it relates to neuronal plasticity, neurodegeneration, and functional brain imaging.
                Bookmark

                Author and article information

                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                17 July 2013
                2013
                : 4
                : 88
                Affiliations
                [1] 1Collège de France, Center for Interdisciplinary Research in Biology/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050 Paris, France
                [2] 2University Pierre et Marie Curie Paris, France
                [3] 3MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University Paris, France
                [4] 4Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University Ghent, Belgium
                [5] 5Department of Cellular and Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia Vancouver, BC, Canada
                [6] 6Departamento de Fisiología, Pontificia Universidad Católica de Chile Santiago, Chile
                [7] 7Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso Valparaíso, Chile
                Author notes

                Edited by: Aida Salameh, Heart Centre University of Leipzig, Germany

                Reviewed by: Gregory E. Morley, New York University School of Medicine, USA; Roger J. Thompson, University of Calgary, Canada; Panagiotis Bargiotas, University of Heidelberg, Germany

                *Correspondence: Christian Giaume, Collège de France, Center for Interdisciplinary Research in Biology/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France e-mail: christian.giaume@ 123456college-defrance.fr

                This article was submitted to Frontiers in Pharmacology of Ion Channels and Channelopathies, a specialty of Frontiers in Pharmacology.

                Article
                10.3389/fphar.2013.00088
                3713369
                23882216
                510ff5ac-f4fd-4a0a-bd37-d5a8085d808f
                Copyright © Giaume, Leybaert, Naus and Sáez.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 23 April 2013
                : 21 June 2013
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 213, Pages: 17, Words: 0
                Categories
                Pharmacology
                Review Article

                Pharmacology & Pharmaceutical medicine
                astrocytes,oligodendrocytes,microglia,gap junctions,neuroglial interactions

                Comments

                Comment on this article