21
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Journal of Pain Research (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on reporting of high-quality laboratory and clinical findings in all fields of pain research and the prevention and management of pain. Sign up for email alerts here.

      52,235 Monthly downloads/views I 2.832 Impact Factor I 4.5 CiteScore I 1.2 Source Normalized Impact per Paper (SNIP) I 0.655 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clear differences in cerebrospinal fluid proteome between women with chronic widespread pain and healthy women – a multivariate explorative cross-sectional study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Frequent chronic local pain can develop into chronic widespread pain (CWP). The spread of pain is correlated with pain intensity, anxiety, and depression, conditions that ultimately lead to a poor quality of life. Knowledge is incomplete about CWP’s etiology, although it has been suggested that both central hyperexcitability and/or a combination with peripheral factors may be involved. Cerebrospinal fluid (CSF) could act as a mirror for the central nervous system as proteins are signal substances that activate the formation of algesics and control nociceptive processes. To this end, this study investigates the CSF protein expression in women with CWP and in female healthy controls.

          Materials and methods

          This study included 12 female patients with CWP diagnosed according to the American College of Rheumatology criteria with 13 healthy age- and sex-matched pain-free subjects. All subjects went through a clinical examination and answered a health questionnaire that registered sociodemographic and anthropometric data, pain characteristics, psychological status, and quality of life rating. CSF was collected by lumbar puncture from each subject. Two-dimensional gel electrophoresis in combination with mass spectrometry was used to analyze the CSF proteome. This study identifies proteins that significantly discriminate between the two groups using multivariate data analysis (MVDA) (i.e., orthogonal partial least squares discriminant analysis [OPLS-DA]).

          Results

          There were no clinically significant levels of psychological distress and catastrophization presented in subjects with CWP. MVDA revealed a highly significant OPLS-DA model where 48 proteins from CSF explained 91% ( R 2) of the variation and with a prediction of 90% ( Q 2). The highest discriminating proteins were metabolic, transport, stress, and inflammatory.

          Conclusion

          The highest discriminating proteins (11 proteins), according to the literature, are involved in apoptotic regulations, anti-inflammatory and anti-oxidative processes, the immune system, and endogenous repair. The results of this explorative study may indicate the presence of neuro-inflammation in the central nervous system of CWP patients. Future studies should be larger and control for confounders and determine which alterations are unspecific/general and which are specific changes.

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

          This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces. Outline 1 Overview 2 CSF formation 2.1 Transcription factors 2.2 Ion transporters 2.3 Enzymes that modulate transport 2.4 Aquaporins or water channels 2.5 Receptors for neuropeptides 3 CSF pressure 3.1 Servomechanism regulatory hypothesis 3.2 Ontogeny of CSF pressure generation 3.3 Congenital hydrocephalus and periventricular regions 3.4 Brain response to elevated CSF pressure 3.5 Advances in measuring CSF waveforms 4 CSF flow 4.1 CSF flow and brain metabolism 4.2 Flow effects on fetal germinal matrix 4.3 Decreasing CSF flow in aging CNS 4.4 Refinement of non-invasive flow measurements 5 CSF volume 5.1 Hemodynamic factors 5.2 Hydrodynamic factors 5.3 Neuroendocrine factors 6 CSF turnover rate 6.1 Adverse effect of ventriculomegaly 6.2 Attenuated CSF sink action 7 CSF composition 7.1 Kidney-like action of CP-CSF system 7.2 Altered CSF biochemistry in aging and disease 7.3 Importance of clearance transport 7.4 Therapeutic manipulation of composition 8 CSF recycling in relation to ISF dynamics 8.1 CSF exchange with brain interstitium 8.2 Components of ISF movement in brain 8.3 Compromised ISF/CSF dynamics and amyloid retention 9 CSF reabsorption 9.1 Arachnoidal outflow resistance 9.2 Arachnoid villi vs. olfactory drainage routes 9.3 Fluid reabsorption along spinal nerves 9.4 Reabsorption across capillary aquaporin channels 10 Developing translationally effective models for restoring CSF balance 11 Conclusion
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trials and tribulations of 'omics data analysis: assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine.

            Respiratory diseases are multifactorial heterogeneous diseases that have proved recalcitrant to understanding using focused molecular techniques. This trend has led to the rise of 'omics approaches (e.g., transcriptomics, proteomics) and subsequent acquisition of large-scale datasets consisting of multiple variables. In 'omics technology-based investigations, discrepancies between the number of variables analyzed (e.g., mRNA, proteins, metabolites) and the number of study subjects constitutes a major statistical challenge. The application of traditional univariate statistical methods (e.g., t-test) to these "short-and-wide" datasets may result in high numbers of false positives, while the predominant approach of p-value correction to account for these high false positive rates (e.g., FDR, Bonferroni) are associated with significant losses in statistical power. In other words, the benefit in decreased false positives must be counterbalanced with a concomitant loss in true positives. As an alternative, multivariate statistical analysis (MVA) is increasingly being employed to cope with 'omics-based data structures. When properly applied, MVA approaches can be powerful tools for integration and interpretation of complex 'omics-based datasets towards the goal of identifying biomarkers and/or subphenotypes. However, MVA methods are also prone to over-interpretation and misuse. A common software used in biomedical research to perform MVA-based analyses is the SIMCA package, which includes multiple MVA methods. In this opinion piece, we propose guidelines for minimum reporting standards for a SIMCA-based workflow, in terms of data preprocessing (e.g., normalization, scaling) and model statistics (number of components, R2, Q2, and CV-ANOVA p-value). Examples of these applications in recent COPD and asthma studies are provided. It is expected that readers will gain an increased understanding of the power and utility of MVA methods for applications in biomedical research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuroinflammation and comorbidity of pain and depression.

              Comorbid depression and chronic pain are highly prevalent in individuals suffering from physical illness. Here, we critically examine the possibility that inflammation is the common mediator of this comorbidity, and we explore the implications of this hypothesis. Inflammation signals the brain to induce sickness responses that include increased pain and negative affect. This is a typical and adaptive response to acute inflammation. However, chronic inflammation induces a transition from these typical sickness behaviors into depression and chronic pain. Several mechanisms can account for the high comorbidity of pain and depression that stem from the precipitating inflammation in physically ill patients. These mechanisms include direct effects of cytokines on the neuronal environment or indirect effects via downregulation of G protein-coupled receptor kinase 2, activation of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase that generates neurotropic kynurenine metabolites, increased brain extracellular glutamate, and the switch of GABAergic neurotransmission from inhibition to excitation. Despite the existence of many neuroimmune candidate mechanisms for the co-occurrence of depression and chronic pain, little work has been devoted so far to critically assess their mediating role in these comorbid symptoms. Understanding neuroimmune mechanisms that underlie depression and pain comorbidity may yield effective pharmaceutical targets that can treat both conditions simultaneously beyond traditional antidepressants and analgesics.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                Journal of Pain Research
                Journal of Pain Research
                Dove Medical Press
                1178-7090
                2017
                13 March 2017
                : 10
                : 575-590
                Affiliations
                Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
                Author notes
                Correspondence: Bijar Ghafouri, Pain and Rehabilitation Medicine, PAINOMICS Research Laboratory, Division of Community Medicine, Department of Medical and Health Sciences, Linköping University, Linköping SE 581 85, Sweden, Tel +46 1 0103 2381, Email bijar.ghafouri@ 123456liu.se
                Article
                jpr-10-575
                10.2147/JPR.S125667
                5356922
                28331360
                50eb53d4-ddb2-4508-be09-5684c3bb7469
                © 2017 Olausson et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Anesthesiology & Pain management
                biomarkers,muscle pain,inflammation
                Anesthesiology & Pain management
                biomarkers, muscle pain, inflammation

                Comments

                Comment on this article