47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The 26S proteasome is a large, ∼2.5 MDa, multi-catalytic ATP-dependent protease complex that serves as the degrading arm of the ubiquitin system, which is the major pathway for regulated degradation of cytosolic, nuclear and membrane proteins in all eukaryotic organisms.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          Structure of 20S proteasome from yeast at 2.4 A resolution.

          The crystal structure of the 20S proteasome from the yeast Saccharomyces cerevisiae shows that its 28 protein subunits are arranged as an (alpha1...alpha7, beta1...beta7)2 complex in four stacked rings and occupy unique locations. The interior of the particle, which harbours the active sites, is only accessible by some very narrow side entrances. The beta-type subunits are synthesized as proproteins before being proteolytically processed for assembly into the particle. The proforms of three of the seven different beta-type subunits, beta1/PRE3, beta2/PUP1 and beta5/PRE2, are cleaved between the threonine at position 1 and the last glycine of the pro-sequence, with release of the active-site residue Thr 1. These three beta-type subunits have inhibitor-binding sites, indicating that PRE2 has a chymotrypsin-like and a trypsin-like activity and that PRE3 has peptidylglutamyl peptide hydrolytic specificity. Other beta-type subunits are processed to an intermediate form, indicating that an additional nonspecific endopeptidase activity may exist which is important for peptide hydrolysis and for the generation of ligands for class I molecules of the major histocompatibility complex.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome.

            The 26S proteasome mediates degradation of ubiquitin-conjugated proteins. Although ubiquitin is recycled from proteasome substrates, the molecular basis of deubiquitination at the proteasome and its relation to substrate degradation remain unknown. The Rpn11 subunit of the proteasome lid subcomplex contains a highly conserved Jab1/MPN domain-associated metalloisopeptidase (JAMM) motif-EX(n)HXHX(10)D. Mutation of the predicted active-site histidines to alanine (rpn11AXA) was lethal and stabilized ubiquitin pathway substrates in yeast. Rpn11(AXA) mutant proteasomes assembled normally but failed to either deubiquitinate or degrade ubiquitinated Sic1 in vitro. Our findings reveal an unexpected coupling between substrate deubiquitination and degradation and suggest a unifying rationale for the presence of the lid in eukaryotic proteasomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complete subunit architecture of the proteasome regulatory particle

              The proteasome is the major ATP-dependent protease in eukaryotic cells, but limited structural information strongly restricts a mechanistic understanding of its activities. The proteasome regulatory particle, consisting of the lid and base subcomplexes, recognizes and processes poly-ubiquitinated substrates. We used electron microscopy and a newly-developed heterologous expression system for the lid to delineate the complete subunit architecture of the regulatory particle. Our studies reveal the spatial arrangement of ubiquitin receptors, deubiquitinating enzymes, and the protein unfolding machinery at subnanometer resolution, outlining the substrate’s path to degradation. Unexpectedly, the ATPase subunits within the base unfoldase are arranged in a spiral staircase, providing insight into potential mechanisms for substrate translocation through the central pore. Large conformational rearrangements of the lid upon holoenzyme formation suggest allosteric regulation of deubiquitination. We provide a structural basis for the ability of the proteasome to degrade a diverse set of substrates and thus regulate vital cellular processes.
                Bookmark

                Author and article information

                Journal
                Cell Res
                Cell Res
                Cell Research
                Nature Publishing Group
                1001-0602
                1748-7838
                August 2016
                22 July 2016
                1 August 2016
                : 26
                : 8
                : 869-885
                Affiliations
                [1 ]Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute , Haifa, Israel
                Author notes
                [* ]Tel: +972-4-829-5427 Fax: +972-4-852-1193 E-mail: aaroncie@ 123456technion.ac.il
                [*]

                These four authors contributed equally to this work.

                Article
                cr201686
                10.1038/cr.2016.86
                4973335
                27444871
                50e18405-07e5-4ac5-9187-f54413224d9a
                Copyright © 2016 The Author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                Categories
                Review

                Cell biology
                ubiquitin,proteasome
                Cell biology
                ubiquitin, proteasome

                Comments

                Comment on this article