55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An integrated, structure- and energy-based view of the genetic code

      research-article
      1 , * , 2 , *
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The principles of mRNA decoding are conserved among all extant life forms. We present an integrative view of all the interaction networks between mRNA, tRNA and rRNA: the intrinsic stability of codon–anticodon duplex, the conformation of the anticodon hairpin, the presence of modified nucleotides, the occurrence of non-Watson–Crick pairs in the codon–anticodon helix and the interactions with bases of rRNA at the A-site decoding site. We derive a more information-rich, alternative representation of the genetic code, that is circular with an unsymmetrical distribution of codons leading to a clear segregation between GC-rich 4-codon boxes and AU-rich 2:2-codon and 3:1-codon boxes. All tRNA sequence variations can be visualized, within an internal structural and energy framework, for each organism, and each anticodon of the sense codons. The multiplicity and complexity of nucleotide modifications at positions 34 and 37 of the anticodon loop segregate meaningfully, and correlate well with the necessity to stabilize AU-rich codon–anticodon pairs and to avoid miscoding in split codon boxes. The evolution and expansion of the genetic code is viewed as being originally based on GC content with progressive introduction of A/U together with tRNA modifications. The representation we present should help the engineering of the genetic code to include non-natural amino acids.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.

          Molecular structures and sequences are generally more revealing of evolutionary relationships than are classical phenotypes (particularly so among microorganisms). Consequently, the basis for the definition of taxa has progressively shifted from the organismal to the cellular to the molecular level. Molecular comparisons show that life on this planet divides into three primary groupings, commonly known as the eubacteria, the archaebacteria, and the eukaryotes. The three are very dissimilar, the differences that separate them being of a more profound nature than the differences that separate typical kingdoms, such as animals and plants. Unfortunately, neither of the conventionally accepted views of the natural relationships among living systems--i.e., the five-kingdom taxonomy or the eukaryote-prokaryote dichotomy--reflects this primary tripartite division of the living world. To remedy this situation we propose that a formal system of organisms be established in which above the level of kingdom there exists a new taxon called a "domain." Life on this planet would then be seen as comprising three domains, the Bacteria, the Archaea, and the Eucarya, each containing two or more kingdoms. (The Eucarya, for example, contain Animalia, Plantae, Fungi, and a number of others yet to be defined). Although taxonomic structure within the Bacteria and Eucarya is not treated herein, Archaea is formally subdivided into the two kingdoms Euryarchaeota (encompassing the methanogens and their phenotypically diverse relatives) and Crenarchaeota (comprising the relatively tight clustering of extremely thermophilic archaebacteria, whose general phenotype appears to resemble most the ancestral phenotype of the Archaea.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The origin of the genetic code.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adding new chemistries to the genetic code.

              The development of new orthogonal aminoacyl-tRNA synthetase/tRNA pairs has led to the addition of approximately 70 unnatural amino acids (UAAs) to the genetic codes of Escherichia coli, yeast, and mammalian cells. These UAAs represent a wide range of structures and functions not found in the canonical 20 amino acids and thus provide new opportunities to generate proteins with enhanced or novel properties and probes of protein structure and function.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                30 September 2016
                22 July 2016
                22 July 2016
                : 44
                : 17
                : 8020-8040
                Affiliations
                [1 ]Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
                [2 ]Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg, France
                Author notes
                [* ]To whom correspondence should be addressed. Email: E.Westhof@ 123456ibmc-cnrs.unistra.fr
                Correspondence may also be addressed to Henri Grosjean. Email: henri4g@ 123456me.com
                Author information
                http://orcid.org/0000-0002-6172-5422
                Article
                10.1093/nar/gkw608
                5041475
                27448410
                50d15dfe-3040-46b9-afb2-faf46a1b9d72
                © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 17 June 2016
                : 11 June 2016
                : 08 May 2016
                Page count
                Pages: 21
                Categories
                Survey and Summary
                Custom metadata
                30 September 2016

                Genetics
                Genetics

                Comments

                Comment on this article