15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      CPT1A-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential

      1 , 2
      Endocrinology
      The Endocrine Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Energy homeostasis during fasting or prolonged exercise depends on mitochondrial fatty acid oxidation (FAO). This pathway is crucial in many tissues with high energy demand and its disruption results in inborn FAO deficiencies. More than 15 FAO genetic defects have been currently described, and pathological variants described in circumpolar populations provide insights into its critical role in metabolism. The use of fatty acids as energy requires more than 2 dozen enzymes and transport proteins, which are involved in the activation and transport of fatty acids into the mitochondria. As the key rate-limiting enzyme of FAO, carnitine palmitoyltransferase I (CPT1) regulates FAO and facilitates adaptation to the environment, both in health and in disease, including cancer. The CPT1 family of proteins contains 3 isoforms: CPT1A, CPT1B, and CPT1C. This review focuses on CPT1A, the liver isoform that catalyzes the rate-limiting step of converting acyl-coenzyme As into acyl-carnitines, which can then cross membranes to get into the mitochondria. The regulation of CPT1A is complex and has several layers that involve genetic, epigenetic, physiological, and nutritional modulators. It is ubiquitously expressed in the body and associated with dire consequences linked with genetic mutations, metabolic disorders, and cancers. This makes CPT1A an attractive target for therapeutic interventions. This review discusses our current understanding of CPT1A expression, its role in heath and disease, and the potential for therapeutic opportunities targeting this enzyme.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fundamentals of cancer metabolism

          Researchers provide a conceptual framework to understand current knowledge of the fundamentals of cancer metabolism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PGC-1 coactivators: inducible regulators of energy metabolism in health and disease.

            Members of the PPARgamma coactivator-1 (PGC-1) family of transcriptional coactivators serve as inducible coregulators of nuclear receptors in the control of cellular energy metabolic pathways. This Review focuses on the biologic and physiologic functions of the PGC-1 coactivators, with particular emphasis on striated muscle, liver, and other organ systems relevant to common diseases such as diabetes and heart failure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting.

              Prolonged deprivation of food induces dramatic changes in mammalian metabolism, including the release of large amounts of fatty acids from the adipose tissue, followed by their oxidation in the liver. The nuclear receptor known as peroxisome proliferator-activated receptor alpha (PPARalpha) was found to play a role in regulating mitochondrial and peroxisomal fatty acid oxidation, suggesting that PPARalpha may be involved in the transcriptional response to fasting. To investigate this possibility, PPARalpha-null mice were subjected to a high fat diet or to fasting, and their responses were compared with those of wild-type mice. PPARalpha-null mice chronically fed a high fat diet showed a massive accumulation of lipid in their livers. A similar phenotype was noted in PPARalpha-null mice fasted for 24 hours, who also displayed severe hypoglycemia, hypoketonemia, hypothermia, and elevated plasma free fatty acid levels, indicating a dramatic inhibition of fatty acid uptake and oxidation. It is shown that to accommodate the increased requirement for hepatic fatty acid oxidation, PPARalpha mRNA is induced during fasting in wild-type mice. The data indicate that PPARalpha plays a pivotal role in the management of energy stores during fasting. By modulating gene expression, PPARalpha stimulates hepatic fatty acid oxidation to supply substrates that can be metabolized by other tissues.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Endocrinology
                The Endocrine Society
                0013-7227
                1945-7170
                February 2020
                February 01 2020
                February 2020
                February 01 2020
                January 04 2020
                : 161
                : 2
                Affiliations
                [1 ]University of Colorado School of Medicine, Division of Medical Oncology, Aurora
                [2 ]University of Colorado School of Medicine, Department of Pharmacology, Aurora, Colorado
                Article
                10.1210/endocr/bqz046
                31900483
                50ca178c-2143-4b55-9690-3c8bd0e83d13
                © 2020

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article